1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using HeuristicLab.Common;
|
---|
5 | using HeuristicLab.Random;
|
---|
6 |
|
---|
7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
8 | public class Feynman5 : FeynmanDescriptor {
|
---|
9 | private readonly int testSamples;
|
---|
10 | private readonly int trainingSamples;
|
---|
11 |
|
---|
12 | public Feynman5() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
13 |
|
---|
14 | public Feynman5(int seed) {
|
---|
15 | Seed = seed;
|
---|
16 | trainingSamples = 10000;
|
---|
17 | testSamples = 10000;
|
---|
18 | noiseRatio = null;
|
---|
19 | }
|
---|
20 |
|
---|
21 | public Feynman5(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
22 | Seed = seed;
|
---|
23 | this.trainingSamples = trainingSamples;
|
---|
24 | this.testSamples = testSamples;
|
---|
25 | this.noiseRatio = noiseRatio;
|
---|
26 | }
|
---|
27 |
|
---|
28 | public override string Name {
|
---|
29 | get {
|
---|
30 | return string.Format("I.9.18 G*m1*m2/((x2-x1)**2+(y2-y1)**2+(z2-z1)**2) | {0}",
|
---|
31 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
32 | }
|
---|
33 | }
|
---|
34 |
|
---|
35 | protected override string TargetVariable { get { return noiseRatio == null ? "F" : "F_noise"; } }
|
---|
36 |
|
---|
37 | protected override string[] VariableNames {
|
---|
38 | get { return new[] {"m1", "m2", "G", "x1", "x2", "y1", "y2", "z1", "z2", noiseRatio == null ? "F" : "F_noise"}; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | protected override string[] AllowedInputVariables {
|
---|
42 | get { return new[] {"m1", "m2", "G", "x1", "x2", "y1", "y2", "z1", "z2"}; }
|
---|
43 | }
|
---|
44 |
|
---|
45 | public int Seed { get; private set; }
|
---|
46 |
|
---|
47 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
48 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
49 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
50 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
51 |
|
---|
52 | protected override List<List<double>> GenerateValues() {
|
---|
53 | var rand = new MersenneTwister((uint) Seed);
|
---|
54 |
|
---|
55 | var data = new List<List<double>>();
|
---|
56 | var m1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
57 | var m2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
58 | var G = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
59 | var x1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 4).ToList();
|
---|
60 | var x2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
61 | var y1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 4).ToList();
|
---|
62 | var y2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
63 | var z1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 4).ToList();
|
---|
64 | var z2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
65 |
|
---|
66 | var F = new List<double>();
|
---|
67 |
|
---|
68 | data.Add(m1);
|
---|
69 | data.Add(m2);
|
---|
70 | data.Add(G);
|
---|
71 | data.Add(x1);
|
---|
72 | data.Add(x2);
|
---|
73 | data.Add(y1);
|
---|
74 | data.Add(y2);
|
---|
75 | data.Add(z1);
|
---|
76 | data.Add(z2);
|
---|
77 | data.Add(F);
|
---|
78 |
|
---|
79 | for (var i = 0; i < m1.Count; i++) {
|
---|
80 | var res = G[i] * m1[i] * m2[i] /
|
---|
81 | (Math.Pow(x2[i] - x1[i], 2) + Math.Pow(y2[i] - y1[i], 2) + Math.Pow(z2[i] - z1[i], 2));
|
---|
82 | F.Add(res);
|
---|
83 | }
|
---|
84 |
|
---|
85 | if (noiseRatio != null) {
|
---|
86 | var F_noise = new List<double>();
|
---|
87 | var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop();
|
---|
88 | F_noise.AddRange(F.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
|
---|
89 | data.Remove(F);
|
---|
90 | data.Add(F_noise);
|
---|
91 | }
|
---|
92 |
|
---|
93 | return data;
|
---|
94 | }
|
---|
95 | }
|
---|
96 | } |
---|