1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HEAL.Attic;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
|
---|
27 | [Item("CMA Linear-weighted Recombinator", "Calculates weighted mean using linear decreasing weights.")]
|
---|
28 | [StorableType("628D27E7-AD3F-418B-A44D-E5338017CA69")]
|
---|
29 | public class CMALinearweightedRecombinator : CMARecombinator {
|
---|
30 |
|
---|
31 | [StorableConstructor]
|
---|
32 | protected CMALinearweightedRecombinator(StorableConstructorFlag _) : base(_) { }
|
---|
33 | protected CMALinearweightedRecombinator(CMALinearweightedRecombinator original, Cloner cloner) : base(original, cloner) { }
|
---|
34 | public CMALinearweightedRecombinator() : base() { }
|
---|
35 |
|
---|
36 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
37 | return new CMALinearweightedRecombinator(this, cloner);
|
---|
38 | }
|
---|
39 |
|
---|
40 | protected override double[] GetWeights(int mu) {
|
---|
41 | var weights = new double[mu];
|
---|
42 | var sum = (mu + 1) * mu / 2.0; // sum of arithmetic progression mu..1
|
---|
43 | for (int i = 0; i < mu; i++)
|
---|
44 | weights[i] = (mu - i) / sum;
|
---|
45 | return weights;
|
---|
46 | }
|
---|
47 | }
|
---|
48 | } |
---|