1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
27 | public static class DatasetExtensions {
|
---|
28 | public static double[,] ToArray(this IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows) {
|
---|
29 | return ToArray(dataset,
|
---|
30 | variables,
|
---|
31 | transformations: variables.Select(_ => (ITransformation<double>)null), // no transform
|
---|
32 | rows: rows);
|
---|
33 | }
|
---|
34 | public static double[,] ToArray(this IDataset dataset, IEnumerable<string> variables,
|
---|
35 | IEnumerable<ITransformation<double>> transformations, IEnumerable<int> rows) {
|
---|
36 | string[] variablesArr = variables.ToArray();
|
---|
37 | int[] rowsArr = rows.ToArray();
|
---|
38 | ITransformation<double>[] transformArr = transformations.ToArray();
|
---|
39 | if (transformArr.Length != variablesArr.Length)
|
---|
40 | throw new ArgumentException("Number of variables and number of transformations must match.");
|
---|
41 |
|
---|
42 | double[,] matrix = new double[rowsArr.Length, variablesArr.Length];
|
---|
43 |
|
---|
44 | for (int i = 0; i < variablesArr.Length; i++) {
|
---|
45 | var origValues = dataset.GetDoubleValues(variablesArr[i], rowsArr);
|
---|
46 | var values = transformArr[i] != null ? transformArr[i].Apply(origValues) : origValues;
|
---|
47 | int row = 0;
|
---|
48 | foreach (var value in values) {
|
---|
49 | matrix[row, i] = value;
|
---|
50 | row++;
|
---|
51 | }
|
---|
52 | }
|
---|
53 |
|
---|
54 | return matrix;
|
---|
55 | }
|
---|
56 |
|
---|
57 | /// <summary>
|
---|
58 | /// Prepares a binary data matrix from a number of factors and specified factor values
|
---|
59 | /// </summary>
|
---|
60 | /// <param name="dataset">A dataset that contains the variable values</param>
|
---|
61 | /// <param name="factorVariables">An enumerable of categorical variables (factors). For each variable an enumerable of values must be specified.</param>
|
---|
62 | /// <param name="rows">An enumerable of row indices for the dataset</param>
|
---|
63 | /// <returns></returns>
|
---|
64 | /// <remarks>Factor variables (categorical variables) are split up into multiple binary variables one for each specified value.</remarks>
|
---|
65 | public static double[,] ToArray(
|
---|
66 | this IDataset dataset,
|
---|
67 | IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables,
|
---|
68 | IEnumerable<int> rows) {
|
---|
69 | // check input variables. Only string variables are allowed.
|
---|
70 | var invalidInputs =
|
---|
71 | factorVariables.Select(kvp => kvp.Key).Where(name => !dataset.VariableHasType<string>(name));
|
---|
72 | if (invalidInputs.Any())
|
---|
73 | throw new NotSupportedException("Unsupported inputs: " + string.Join(", ", invalidInputs));
|
---|
74 |
|
---|
75 | int numBinaryColumns = factorVariables.Sum(kvp => kvp.Value.Count());
|
---|
76 |
|
---|
77 | List<int> rowsList = rows.ToList();
|
---|
78 | double[,] matrix = new double[rowsList.Count, numBinaryColumns];
|
---|
79 |
|
---|
80 | int col = 0;
|
---|
81 | foreach (var kvp in factorVariables) {
|
---|
82 | var varName = kvp.Key;
|
---|
83 | var cats = kvp.Value;
|
---|
84 | if (!cats.Any()) continue;
|
---|
85 | foreach (var cat in cats) {
|
---|
86 | var values = dataset.GetStringValues(varName, rows);
|
---|
87 | int row = 0;
|
---|
88 | foreach (var value in values) {
|
---|
89 | matrix[row, col] = value == cat ? 1 : 0;
|
---|
90 | row++;
|
---|
91 | }
|
---|
92 | col++;
|
---|
93 | }
|
---|
94 | }
|
---|
95 | return matrix;
|
---|
96 | }
|
---|
97 |
|
---|
98 | public static IntervalCollection GetIntervals(this IDataset dataset) {
|
---|
99 | IntervalCollection intervalCollection = new IntervalCollection();
|
---|
100 | foreach (var variable in dataset.DoubleVariables) { // intervals are only possible for double variables
|
---|
101 | var variableInterval = Interval.GetInterval(dataset.GetDoubleValues(variable));
|
---|
102 | intervalCollection.AddInterval(variable, variableInterval);
|
---|
103 | }
|
---|
104 |
|
---|
105 | return intervalCollection;
|
---|
106 | }
|
---|
107 |
|
---|
108 | public static IEnumerable<KeyValuePair<string, IEnumerable<string>>> GetFactorVariableValues(
|
---|
109 | this IDataset ds, IEnumerable<string> factorVariables, IEnumerable<int> rows) {
|
---|
110 | return from factor in factorVariables
|
---|
111 | let distinctValues = ds.GetStringValues(factor, rows).Distinct().ToArray()
|
---|
112 | // 1 distinct value => skip (constant)
|
---|
113 | // 2 distinct values => only take one of the two values
|
---|
114 | // >=3 distinct values => create a binary value for each value
|
---|
115 | let reducedValues = distinctValues.Length <= 2
|
---|
116 | ? distinctValues.Take(distinctValues.Length - 1)
|
---|
117 | : distinctValues
|
---|
118 | select new KeyValuePair<string, IEnumerable<string>>(factor, reducedValues);
|
---|
119 | }
|
---|
120 | }
|
---|
121 | }
|
---|