1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using HEAL.Attic;
|
---|
5 | using HeuristicLab.Common;
|
---|
6 | using HeuristicLab.Core;
|
---|
7 | using HeuristicLab.Data;
|
---|
8 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
9 | using HeuristicLab.NativeInterpreter;
|
---|
10 | using HeuristicLab.Parameters;
|
---|
11 |
|
---|
12 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
13 | [StorableType("A624630B-0CEB-4D06-9B26-708987A7AE8F")]
|
---|
14 | [Item("ParameterOptimizer", "Operator calling into native C++ code for tree interpretation.")]
|
---|
15 | public class ParameterOptimizer : NativeInterpreter {
|
---|
16 | private const string UseNonmonotonicStepsParameterName = "UseNonmonotonicSteps";
|
---|
17 | private const string OptimizerIterationsParameterName = "OptimizerIterations";
|
---|
18 |
|
---|
19 | private const string MinimizerTypeParameterName = "MinimizerType";
|
---|
20 | private const string LinearSolverTypeParameterName = "LinearSolverType";
|
---|
21 | private const string TrustRegionStrategyTypeParameterName = "TrustRegionStrategyType";
|
---|
22 | private const string DogLegTypeParameterName = "DogLegType";
|
---|
23 | private const string LineSearchDirectionTypeParameterName = "LineSearchDirectionType";
|
---|
24 |
|
---|
25 | private static readonly string[] MinimizerType = new[] { "LineSearch", "TrustRegion" };
|
---|
26 | private static readonly string[] LinerSolverType = new[]
|
---|
27 | {
|
---|
28 | "DenseNormalCholesky",
|
---|
29 | "DenseQR",
|
---|
30 | "SparseNormalCholesky",
|
---|
31 | "DenseSchur",
|
---|
32 | "SparseSchur",
|
---|
33 | "IterativeSchur",
|
---|
34 | "ConjugateGradients"
|
---|
35 | };
|
---|
36 | private static readonly string[] TrustRegionStrategyType = new[]
|
---|
37 | {
|
---|
38 | "LevenbergMarquardt",
|
---|
39 | "Dogleg"
|
---|
40 | };
|
---|
41 | private static readonly string[] DoglegType = new[]
|
---|
42 | {
|
---|
43 | "Traditional",
|
---|
44 | "Subspace"
|
---|
45 | };
|
---|
46 | private static readonly string[] LinearSearchDirectionType = new[]
|
---|
47 | {
|
---|
48 | "SteepestDescent",
|
---|
49 | "NonlinearConjugateGradient",
|
---|
50 | "LBFGS",
|
---|
51 | "BFGS"
|
---|
52 | };
|
---|
53 |
|
---|
54 | #region parameters
|
---|
55 | public IFixedValueParameter<IntValue> OptimizerIterationsParameter {
|
---|
56 | get { return (IFixedValueParameter<IntValue>)Parameters[OptimizerIterationsParameterName]; }
|
---|
57 | }
|
---|
58 | public IFixedValueParameter<BoolValue> UseNonmonotonicStepsParameter {
|
---|
59 | get { return (IFixedValueParameter<BoolValue>)Parameters[UseNonmonotonicStepsParameterName]; }
|
---|
60 | }
|
---|
61 | public IConstrainedValueParameter<StringValue> MinimizerTypeParameter {
|
---|
62 | get { return (IConstrainedValueParameter<StringValue>)Parameters[MinimizerTypeParameterName]; }
|
---|
63 | }
|
---|
64 | public IConstrainedValueParameter<StringValue> LinearSolverTypeParameter {
|
---|
65 | get { return (IConstrainedValueParameter<StringValue>)Parameters[LinearSolverTypeParameterName]; }
|
---|
66 | }
|
---|
67 | public IConstrainedValueParameter<StringValue> TrustRegionStrategyTypeParameter {
|
---|
68 | get { return (IConstrainedValueParameter<StringValue>)Parameters[TrustRegionStrategyTypeParameterName]; }
|
---|
69 | }
|
---|
70 | public IConstrainedValueParameter<StringValue> DogLegTypeParameter {
|
---|
71 | get { return (IConstrainedValueParameter<StringValue>)Parameters[DogLegTypeParameterName]; }
|
---|
72 | }
|
---|
73 | public IConstrainedValueParameter<StringValue> LineSearchDirectionTypeParameter {
|
---|
74 | get { return (IConstrainedValueParameter<StringValue>)Parameters[LineSearchDirectionTypeParameterName]; }
|
---|
75 | }
|
---|
76 | #endregion
|
---|
77 |
|
---|
78 | #region parameter properties
|
---|
79 | public int OptimizerIterations {
|
---|
80 | get { return OptimizerIterationsParameter.Value.Value; }
|
---|
81 | set { OptimizerIterationsParameter.Value.Value = value; }
|
---|
82 | }
|
---|
83 | public bool UseNonmonotonicSteps {
|
---|
84 | get { return UseNonmonotonicStepsParameter.Value.Value; }
|
---|
85 | set { UseNonmonotonicStepsParameter.Value.Value = value; }
|
---|
86 | }
|
---|
87 | private CeresTypes.MinimizerType Minimizer {
|
---|
88 | get { return (CeresTypes.MinimizerType)Enum.Parse(typeof(CeresTypes.MinimizerType), MinimizerTypeParameter.Value.Value); }
|
---|
89 | }
|
---|
90 | private CeresTypes.LinearSolverType LinearSolver {
|
---|
91 | get { return (CeresTypes.LinearSolverType)Enum.Parse(typeof(CeresTypes.LinearSolverType), LinearSolverTypeParameter.Value.Value); }
|
---|
92 | }
|
---|
93 | private CeresTypes.TrustRegionStrategyType TrustRegionStrategy {
|
---|
94 | get { return (CeresTypes.TrustRegionStrategyType)Enum.Parse(typeof(CeresTypes.TrustRegionStrategyType), TrustRegionStrategyTypeParameter.Value.Value); }
|
---|
95 | }
|
---|
96 | private CeresTypes.DoglegType Dogleg {
|
---|
97 | get { return (CeresTypes.DoglegType)Enum.Parse(typeof(CeresTypes.DoglegType), DogLegTypeParameter.Value.Value); }
|
---|
98 | }
|
---|
99 | private CeresTypes.LineSearchDirectionType LineSearchDirection {
|
---|
100 | get { return (CeresTypes.LineSearchDirectionType)Enum.Parse(typeof(CeresTypes.LineSearchDirectionType), LineSearchDirectionTypeParameter.Value.Value); }
|
---|
101 | }
|
---|
102 | #endregion
|
---|
103 |
|
---|
104 | private static IConstrainedValueParameter<StringValue> InitializeParameter(string name, string[] validValues, string value, bool hidden = true) {
|
---|
105 | var parameter = new ConstrainedValueParameter<StringValue>(name, new ItemSet<StringValue>(validValues.Select(x => new StringValue(x))));
|
---|
106 | parameter.Value = parameter.ValidValues.Single(x => x.Value == value);
|
---|
107 | parameter.Hidden = hidden;
|
---|
108 | return parameter;
|
---|
109 | }
|
---|
110 |
|
---|
111 | [StorableConstructor]
|
---|
112 | protected ParameterOptimizer(StorableConstructorFlag _) : base(_) { }
|
---|
113 |
|
---|
114 | public ParameterOptimizer() {
|
---|
115 | var minimizerTypeParameter = InitializeParameter(MinimizerTypeParameterName, MinimizerType, "TrustRegion");
|
---|
116 | var linearSolverTypeParameter = InitializeParameter(LinearSolverTypeParameterName, LinerSolverType, "DenseQR");
|
---|
117 | var trustRegionStrategyTypeParameter = InitializeParameter(TrustRegionStrategyTypeParameterName, TrustRegionStrategyType, "LevenbergMarquardt");
|
---|
118 | var dogLegTypeParameter = InitializeParameter(DogLegTypeParameterName, DoglegType, "Traditional");
|
---|
119 | var lineSearchDirectionTypeParameter = InitializeParameter(LineSearchDirectionTypeParameterName, LinearSearchDirectionType, "SteepestDescent");
|
---|
120 |
|
---|
121 | Parameters.Add(new FixedValueParameter<IntValue>(OptimizerIterationsParameterName, "The number of iterations for the nonlinear least squares optimizer.", new IntValue(10)));
|
---|
122 | Parameters.Add(new FixedValueParameter<BoolValue>(UseNonmonotonicStepsParameterName, "Allow the non linear least squares optimizer to make steps in parameter space that don't necessarily decrease the error, but might improve overall convergence.", new BoolValue(false)));
|
---|
123 | Parameters.AddRange(new[] { minimizerTypeParameter, linearSolverTypeParameter, trustRegionStrategyTypeParameter, dogLegTypeParameter, lineSearchDirectionTypeParameter });
|
---|
124 | }
|
---|
125 |
|
---|
126 | public ParameterOptimizer(ParameterOptimizer original, Cloner cloner) : base(original, cloner) { }
|
---|
127 |
|
---|
128 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
129 | return new ParameterOptimizer(this, cloner);
|
---|
130 | }
|
---|
131 |
|
---|
132 | private static byte MapSupportedSymbols(ISymbolicExpressionTreeNode node) {
|
---|
133 | var opCode = OpCodes.MapSymbolToOpCode(node);
|
---|
134 | if (supportedOpCodes.Contains(opCode)) return opCode;
|
---|
135 | else throw new NotSupportedException($"The native interpreter does not support {node.Symbol.Name}");
|
---|
136 | }
|
---|
137 |
|
---|
138 | public static Dictionary<ISymbolicExpressionTreeNode, double> OptimizeTree(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable<int> rows, string targetVariable, HashSet<ISymbolicExpressionTreeNode> nodesToOptimize, SolverOptions options, ref OptimizationSummary summary) {
|
---|
139 | var code = Compile(tree, dataset, MapSupportedSymbols, out List<ISymbolicExpressionTreeNode> nodes);
|
---|
140 |
|
---|
141 | for (int i = 0; i < code.Length; ++i) {
|
---|
142 | code[i].Optimize = nodesToOptimize.Contains(nodes[i]);
|
---|
143 | }
|
---|
144 |
|
---|
145 | if (options.Iterations > 0) {
|
---|
146 | var target = dataset.GetDoubleValues(targetVariable, rows).ToArray();
|
---|
147 | var rowsArray = rows.ToArray();
|
---|
148 | var result = new double[rowsArray.Length];
|
---|
149 |
|
---|
150 | NativeWrapper.GetValues(code, rowsArray, options, result, target, out summary);
|
---|
151 | }
|
---|
152 | return Enumerable.Range(0, code.Length).Where(i => nodes[i] is SymbolicExpressionTreeTerminalNode).ToDictionary(i => nodes[i], i => code[i].Value);
|
---|
153 | }
|
---|
154 |
|
---|
155 | public Dictionary<ISymbolicExpressionTreeNode, double> OptimizeTree(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable<int> rows, string targetVariable, HashSet<ISymbolicExpressionTreeNode> nodesToOptimize = null) {
|
---|
156 | var options = new SolverOptions {
|
---|
157 | Iterations = OptimizerIterations,
|
---|
158 | Minimizer = Minimizer,
|
---|
159 | LinearSolver = LinearSolver,
|
---|
160 | TrustRegionStrategy = TrustRegionStrategy,
|
---|
161 | Dogleg = Dogleg,
|
---|
162 | LineSearchDirection = LineSearchDirection,
|
---|
163 | UseNonmonotonicSteps = UseNonmonotonicSteps ? 1 : 0
|
---|
164 | };
|
---|
165 |
|
---|
166 | var summary = new OptimizationSummary();
|
---|
167 |
|
---|
168 | // if no nodes are specified, use all the nodes
|
---|
169 | if (nodesToOptimize == null) {
|
---|
170 | nodesToOptimize = new HashSet<ISymbolicExpressionTreeNode>(tree.IterateNodesPrefix().Where(x => x is SymbolicExpressionTreeTerminalNode));
|
---|
171 | }
|
---|
172 |
|
---|
173 | return OptimizeTree(tree, dataset, rows, targetVariable, nodesToOptimize, options, ref summary);
|
---|
174 | }
|
---|
175 |
|
---|
176 | public static Dictionary<ISymbolicExpressionTreeNode, double> OptimizeTree(ISymbolicExpressionTree[] terms, IDataset dataset, IEnumerable<int> rows, string targetVariable, HashSet<ISymbolicExpressionTreeNode> nodesToOptimize, SolverOptions options, double[] coeff, ref OptimizationSummary summary) {
|
---|
177 | if (options.Iterations == 0) {
|
---|
178 | // throw exception? set iterations to 100? return empty dictionary?
|
---|
179 | return new Dictionary<ISymbolicExpressionTreeNode, double>();
|
---|
180 | }
|
---|
181 |
|
---|
182 | var termIndices = new int[terms.Length];
|
---|
183 | var totalCodeSize = 0;
|
---|
184 | var totalCode = new List<NativeInstruction>();
|
---|
185 | var totalNodes = new List<ISymbolicExpressionTreeNode>();
|
---|
186 |
|
---|
187 | // internally the native wrapper takes a single array of NativeInstructions where the indices point to the individual terms
|
---|
188 | for (int i = 0; i < terms.Length; ++i) {
|
---|
189 | var code = Compile(terms[i], dataset, MapSupportedSymbols, out List<ISymbolicExpressionTreeNode> nodes);
|
---|
190 | for (int j = 0; j < code.Length; ++j) {
|
---|
191 | code[j].Optimize = nodesToOptimize.Contains(nodes[j]);
|
---|
192 | }
|
---|
193 | totalCode.AddRange(code);
|
---|
194 | totalNodes.AddRange(nodes);
|
---|
195 |
|
---|
196 | termIndices[i] = code.Length + totalCodeSize - 1;
|
---|
197 | totalCodeSize += code.Length;
|
---|
198 | }
|
---|
199 | var target = dataset.GetDoubleValues(targetVariable, rows).ToArray();
|
---|
200 | var rowsArray = rows.ToArray();
|
---|
201 | var result = new double[rowsArray.Length];
|
---|
202 | var codeArray = totalCode.ToArray();
|
---|
203 |
|
---|
204 | NativeWrapper.GetValuesVarPro(codeArray, termIndices,rowsArray, coeff, options, result, target, out summary);
|
---|
205 | return Enumerable.Range(0, totalCodeSize).Where(i => codeArray[i].Optimize).ToDictionary(i => totalNodes[i], i => codeArray[i].Value);
|
---|
206 | }
|
---|
207 | }
|
---|
208 | }
|
---|