1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Diagnostics;
|
---|
24 | using System.Threading;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HEAL.Attic;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.Benchmarks {
|
---|
32 | [Item("Linpack", "Linpack performance benchmark.")]
|
---|
33 | [StorableType("A480970C-E954-45F6-AFDE-BD99054E1BF7")]
|
---|
34 | public sealed class Linpack : Benchmark {
|
---|
35 | private const int DEFAULT_PSIZE = 1500;
|
---|
36 |
|
---|
37 | private double eps_result = 0.0;
|
---|
38 | private double mflops_result = 0.0;
|
---|
39 | private double residn_result = 0.0;
|
---|
40 | private double time_result = 0.0;
|
---|
41 | private double total = 0.0;
|
---|
42 |
|
---|
43 | private CancellationToken cancellationToken;
|
---|
44 | private Stopwatch sw = new Stopwatch();
|
---|
45 |
|
---|
46 | [StorableConstructor]
|
---|
47 | private Linpack(StorableConstructorFlag _) : base(_) { }
|
---|
48 | private Linpack(Linpack original, Cloner cloner) : base(original, cloner) { }
|
---|
49 | public Linpack() { }
|
---|
50 |
|
---|
51 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
52 | return new Linpack(this, cloner);
|
---|
53 | }
|
---|
54 |
|
---|
55 | // implementation based on Java version: http://www.netlib.org/benchmark/linpackjava/
|
---|
56 | public override void Run(CancellationToken token, ResultCollection results) {
|
---|
57 | cancellationToken = token;
|
---|
58 | bool stopBenchmark = false;
|
---|
59 | TimeSpan executionTime = new TimeSpan();
|
---|
60 | bool resultAchieved = false;
|
---|
61 | do {
|
---|
62 | int n = DEFAULT_PSIZE;
|
---|
63 | int ldaa = DEFAULT_PSIZE;
|
---|
64 | int lda = DEFAULT_PSIZE + 1;
|
---|
65 |
|
---|
66 | double[][] a = new double[ldaa][];
|
---|
67 | double[] b = new double[ldaa];
|
---|
68 | double[] x = new double[ldaa];
|
---|
69 |
|
---|
70 | double ops;
|
---|
71 | double norma;
|
---|
72 | double normx;
|
---|
73 | double resid;
|
---|
74 | int i;
|
---|
75 | int info;
|
---|
76 | int[] ipvt = new int[ldaa];
|
---|
77 |
|
---|
78 | for (i = 0; i < ldaa; i++) {
|
---|
79 | a[i] = new double[lda];
|
---|
80 | }
|
---|
81 |
|
---|
82 | ops = (2.0e0 * (((double)n) * n * n)) / 3.0 + 2.0 * (n * n);
|
---|
83 |
|
---|
84 | norma = mathGen(a, lda, n, b);
|
---|
85 |
|
---|
86 | if (cancellationToken.IsCancellationRequested) {
|
---|
87 | throw new OperationCanceledException(cancellationToken);
|
---|
88 | }
|
---|
89 |
|
---|
90 | sw.Reset();
|
---|
91 | sw.Start();
|
---|
92 |
|
---|
93 | info = dgefa(a, lda, n, ipvt);
|
---|
94 |
|
---|
95 | if (cancellationToken.IsCancellationRequested) {
|
---|
96 | throw new OperationCanceledException(cancellationToken);
|
---|
97 | }
|
---|
98 |
|
---|
99 | dgesl(a, lda, n, ipvt, b, 0);
|
---|
100 |
|
---|
101 | sw.Stop();
|
---|
102 | total = sw.Elapsed.TotalMilliseconds / 1000;
|
---|
103 |
|
---|
104 | if (cancellationToken.IsCancellationRequested) {
|
---|
105 | throw new OperationCanceledException(cancellationToken);
|
---|
106 | }
|
---|
107 |
|
---|
108 | for (i = 0; i < n; i++) {
|
---|
109 | x[i] = b[i];
|
---|
110 | }
|
---|
111 |
|
---|
112 | norma = mathGen(a, lda, n, b);
|
---|
113 |
|
---|
114 | for (i = 0; i < n; i++) {
|
---|
115 | b[i] = -b[i];
|
---|
116 | }
|
---|
117 |
|
---|
118 | dmxpy(n, b, n, lda, x, a);
|
---|
119 |
|
---|
120 | resid = 0.0;
|
---|
121 | normx = 0.0;
|
---|
122 |
|
---|
123 | for (i = 0; i < n; i++) {
|
---|
124 | resid = (resid > abs(b[i])) ? resid : abs(b[i]);
|
---|
125 | normx = (normx > abs(x[i])) ? normx : abs(x[i]);
|
---|
126 | }
|
---|
127 |
|
---|
128 | eps_result = epslon((double)1.0);
|
---|
129 |
|
---|
130 | residn_result = resid / (n * norma * normx * eps_result);
|
---|
131 | residn_result += 0.005; // for rounding
|
---|
132 | residn_result = (int)(residn_result * 100);
|
---|
133 | residn_result /= 100;
|
---|
134 |
|
---|
135 | time_result = total;
|
---|
136 | time_result += 0.005; // for rounding
|
---|
137 | time_result = (int)(time_result * 100);
|
---|
138 | time_result /= 100;
|
---|
139 |
|
---|
140 | mflops_result = ops / (1.0e6 * total);
|
---|
141 | mflops_result += 0.0005; // for rounding
|
---|
142 | mflops_result = (int)(mflops_result * 1000);
|
---|
143 | mflops_result /= 1000;
|
---|
144 |
|
---|
145 | if (!resultAchieved) {
|
---|
146 | results.Add(new Result("Mflops/s", new DoubleValue(mflops_result)));
|
---|
147 | results.Add(new Result("Total Mflops/s", new DoubleValue(mflops_result * Environment.ProcessorCount)));
|
---|
148 | resultAchieved = true;
|
---|
149 | }
|
---|
150 |
|
---|
151 | executionTime += sw.Elapsed;
|
---|
152 | if ((TimeLimit == null) || (TimeLimit.TotalMilliseconds == 0))
|
---|
153 | stopBenchmark = true;
|
---|
154 | else if (executionTime > TimeLimit)
|
---|
155 | stopBenchmark = true;
|
---|
156 | } while (!stopBenchmark);
|
---|
157 | }
|
---|
158 |
|
---|
159 | private double abs(double d) {
|
---|
160 | return (d >= 0) ? d : -d;
|
---|
161 | }
|
---|
162 |
|
---|
163 | private double mathGen(double[][] a, int lda, int n, double[] b) {
|
---|
164 | Random gen;
|
---|
165 | double norma;
|
---|
166 | int init, i, j;
|
---|
167 |
|
---|
168 | init = 1325;
|
---|
169 | norma = 0.0;
|
---|
170 |
|
---|
171 | gen = new Random(init);
|
---|
172 |
|
---|
173 | if (cancellationToken.IsCancellationRequested) {
|
---|
174 | throw new OperationCanceledException(cancellationToken);
|
---|
175 | }
|
---|
176 |
|
---|
177 | // Next two for() statements switched. Solver wants
|
---|
178 | // matrix in column order. --dmd 3/3/97
|
---|
179 |
|
---|
180 | for (i = 0; i < n; i++) {
|
---|
181 | for (j = 0; j < n; j++) {
|
---|
182 | a[j][i] = gen.NextDouble() - .5;
|
---|
183 | norma = (a[j][i] > norma) ? a[j][i] : norma;
|
---|
184 | }
|
---|
185 | }
|
---|
186 |
|
---|
187 | for (i = 0; i < n; i++) {
|
---|
188 | b[i] = 0.0;
|
---|
189 | }
|
---|
190 |
|
---|
191 | for (j = 0; j < n; j++) {
|
---|
192 | for (i = 0; i < n; i++) {
|
---|
193 | b[i] += a[j][i];
|
---|
194 | }
|
---|
195 | }
|
---|
196 |
|
---|
197 | return norma;
|
---|
198 | }
|
---|
199 |
|
---|
200 | private int dgefa(double[][] a, int lda, int n, int[] ipvt) {
|
---|
201 | double[] col_k, col_j;
|
---|
202 | double t;
|
---|
203 | int j, k, kp1, l, nm1;
|
---|
204 | int info;
|
---|
205 |
|
---|
206 | if (cancellationToken.IsCancellationRequested) {
|
---|
207 | throw new OperationCanceledException(cancellationToken);
|
---|
208 | }
|
---|
209 |
|
---|
210 | // gaussian elimination with partial pivoting
|
---|
211 |
|
---|
212 | info = 0;
|
---|
213 | nm1 = n - 1;
|
---|
214 | if (nm1 >= 0) {
|
---|
215 | for (k = 0; k < nm1; k++) {
|
---|
216 | col_k = a[k];
|
---|
217 | kp1 = k + 1;
|
---|
218 |
|
---|
219 | // find l = pivot index
|
---|
220 |
|
---|
221 | l = idamax(n - k, col_k, k, 1) + k;
|
---|
222 | ipvt[k] = l;
|
---|
223 |
|
---|
224 | // zero pivot implies this column already triangularized
|
---|
225 |
|
---|
226 | if (col_k[l] != 0) {
|
---|
227 | // interchange if necessary
|
---|
228 |
|
---|
229 | if (l != k) {
|
---|
230 | t = col_k[l];
|
---|
231 | col_k[l] = col_k[k];
|
---|
232 | col_k[k] = t;
|
---|
233 | }
|
---|
234 |
|
---|
235 | if (cancellationToken.IsCancellationRequested) {
|
---|
236 | throw new OperationCanceledException(cancellationToken);
|
---|
237 | }
|
---|
238 |
|
---|
239 | // compute multipliers
|
---|
240 |
|
---|
241 | t = -1.0 / col_k[k];
|
---|
242 | dscal(n - (kp1), t, col_k, kp1, 1);
|
---|
243 |
|
---|
244 | if (cancellationToken.IsCancellationRequested) {
|
---|
245 | throw new OperationCanceledException(cancellationToken);
|
---|
246 | }
|
---|
247 |
|
---|
248 | // row elimination with column indexing
|
---|
249 |
|
---|
250 | for (j = kp1; j < n; j++) {
|
---|
251 | col_j = a[j];
|
---|
252 | t = col_j[l];
|
---|
253 | if (l != k) {
|
---|
254 | col_j[l] = col_j[k];
|
---|
255 | col_j[k] = t;
|
---|
256 | }
|
---|
257 | daxpy(n - (kp1), t, col_k, kp1, 1,
|
---|
258 | col_j, kp1, 1);
|
---|
259 | }
|
---|
260 | } else {
|
---|
261 | info = k;
|
---|
262 | }
|
---|
263 | }
|
---|
264 | }
|
---|
265 |
|
---|
266 | ipvt[n - 1] = n - 1;
|
---|
267 | if (a[(n - 1)][(n - 1)] == 0) info = n - 1;
|
---|
268 |
|
---|
269 | return info;
|
---|
270 | }
|
---|
271 |
|
---|
272 | private void dgesl(double[][] a, int lda, int n, int[] ipvt, double[] b, int job) {
|
---|
273 | double t;
|
---|
274 | int k, kb, l, nm1, kp1;
|
---|
275 |
|
---|
276 | if (cancellationToken.IsCancellationRequested) {
|
---|
277 | throw new OperationCanceledException(cancellationToken);
|
---|
278 | }
|
---|
279 |
|
---|
280 | nm1 = n - 1;
|
---|
281 | if (job == 0) {
|
---|
282 | // job = 0 , solve a * x = b. first solve l*y = b
|
---|
283 |
|
---|
284 | if (nm1 >= 1) {
|
---|
285 | for (k = 0; k < nm1; k++) {
|
---|
286 | l = ipvt[k];
|
---|
287 | t = b[l];
|
---|
288 | if (l != k) {
|
---|
289 | b[l] = b[k];
|
---|
290 | b[k] = t;
|
---|
291 | }
|
---|
292 | kp1 = k + 1;
|
---|
293 | daxpy(n - (kp1), t, a[k], kp1, 1, b, kp1, 1);
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 | if (cancellationToken.IsCancellationRequested) {
|
---|
298 | throw new OperationCanceledException(cancellationToken);
|
---|
299 | }
|
---|
300 |
|
---|
301 | // now solve u*x = y
|
---|
302 |
|
---|
303 | for (kb = 0; kb < n; kb++) {
|
---|
304 | k = n - (kb + 1);
|
---|
305 | b[k] /= a[k][k];
|
---|
306 | t = -b[k];
|
---|
307 | daxpy(k, t, a[k], 0, 1, b, 0, 1);
|
---|
308 | }
|
---|
309 | } else {
|
---|
310 | // job = nonzero, solve trans(a) * x = b. first solve trans(u)*y = b
|
---|
311 |
|
---|
312 | for (k = 0; k < n; k++) {
|
---|
313 | t = ddot(k, a[k], 0, 1, b, 0, 1);
|
---|
314 | b[k] = (b[k] - t) / a[k][k];
|
---|
315 | }
|
---|
316 |
|
---|
317 | if (cancellationToken.IsCancellationRequested) {
|
---|
318 | throw new OperationCanceledException(cancellationToken);
|
---|
319 | }
|
---|
320 |
|
---|
321 | // now solve trans(l)*x = y
|
---|
322 |
|
---|
323 | if (nm1 >= 1) {
|
---|
324 | //for (kb = 1; kb < nm1; kb++) {
|
---|
325 | for (kb = 0; kb < nm1; kb++) {
|
---|
326 | k = n - (kb + 1);
|
---|
327 | kp1 = k + 1;
|
---|
328 | b[k] += ddot(n - (kp1), a[k], kp1, 1, b, kp1, 1);
|
---|
329 | l = ipvt[k];
|
---|
330 | if (l != k) {
|
---|
331 | t = b[l];
|
---|
332 | b[l] = b[k];
|
---|
333 | b[k] = t;
|
---|
334 | }
|
---|
335 | }
|
---|
336 | }
|
---|
337 | }
|
---|
338 | }
|
---|
339 |
|
---|
340 | private void daxpy(int n, double da, double[] dx, int dx_off, int incx, double[] dy, int dy_off, int incy) {
|
---|
341 | int i, ix, iy;
|
---|
342 |
|
---|
343 | if (cancellationToken.IsCancellationRequested) {
|
---|
344 | throw new OperationCanceledException(cancellationToken);
|
---|
345 | }
|
---|
346 |
|
---|
347 | if ((n > 0) && (da != 0)) {
|
---|
348 | if (incx != 1 || incy != 1) {
|
---|
349 |
|
---|
350 | // code for unequal increments or equal increments not equal to 1
|
---|
351 |
|
---|
352 | ix = 0;
|
---|
353 | iy = 0;
|
---|
354 | if (incx < 0) ix = (-n + 1) * incx;
|
---|
355 | if (incy < 0) iy = (-n + 1) * incy;
|
---|
356 | for (i = 0; i < n; i++) {
|
---|
357 | dy[iy + dy_off] += da * dx[ix + dx_off];
|
---|
358 | ix += incx;
|
---|
359 | iy += incy;
|
---|
360 | }
|
---|
361 | return;
|
---|
362 | } else {
|
---|
363 | // code for both increments equal to 1
|
---|
364 |
|
---|
365 | for (i = 0; i < n; i++)
|
---|
366 | dy[i + dy_off] += da * dx[i + dx_off];
|
---|
367 | }
|
---|
368 | }
|
---|
369 | }
|
---|
370 |
|
---|
371 | private double ddot(int n, double[] dx, int dx_off, int incx, double[] dy, int dy_off, int incy) {
|
---|
372 | double dtemp = 0;
|
---|
373 | int i, ix, iy;
|
---|
374 |
|
---|
375 | if (cancellationToken.IsCancellationRequested) {
|
---|
376 | throw new OperationCanceledException(cancellationToken);
|
---|
377 | }
|
---|
378 |
|
---|
379 | if (n > 0) {
|
---|
380 | if (incx != 1 || incy != 1) {
|
---|
381 | // code for unequal increments or equal increments not equal to 1
|
---|
382 |
|
---|
383 | ix = 0;
|
---|
384 | iy = 0;
|
---|
385 | if (incx < 0) ix = (-n + 1) * incx;
|
---|
386 | if (incy < 0) iy = (-n + 1) * incy;
|
---|
387 | for (i = 0; i < n; i++) {
|
---|
388 | dtemp += dx[ix + dx_off] * dy[iy + dy_off];
|
---|
389 | ix += incx;
|
---|
390 | iy += incy;
|
---|
391 | }
|
---|
392 | } else {
|
---|
393 | // code for both increments equal to 1
|
---|
394 |
|
---|
395 | for (i = 0; i < n; i++)
|
---|
396 | dtemp += dx[i + dx_off] * dy[i + dy_off];
|
---|
397 | }
|
---|
398 | }
|
---|
399 | return (dtemp);
|
---|
400 | }
|
---|
401 |
|
---|
402 | private void dscal(int n, double da, double[] dx, int dx_off, int incx) {
|
---|
403 | int i, nincx;
|
---|
404 |
|
---|
405 | if (cancellationToken.IsCancellationRequested) {
|
---|
406 | throw new OperationCanceledException(cancellationToken);
|
---|
407 | }
|
---|
408 |
|
---|
409 | if (n > 0) {
|
---|
410 | if (incx != 1) {
|
---|
411 | // code for increment not equal to 1
|
---|
412 |
|
---|
413 | nincx = n * incx;
|
---|
414 | for (i = 0; i < nincx; i += incx)
|
---|
415 | dx[i + dx_off] *= da;
|
---|
416 | } else {
|
---|
417 | // code for increment equal to 1
|
---|
418 |
|
---|
419 | for (i = 0; i < n; i++)
|
---|
420 | dx[i + dx_off] *= da;
|
---|
421 | }
|
---|
422 | }
|
---|
423 | }
|
---|
424 |
|
---|
425 | private int idamax(int n, double[] dx, int dx_off, int incx) {
|
---|
426 | double dmax, dtemp;
|
---|
427 | int i, ix, itemp = 0;
|
---|
428 |
|
---|
429 | if (cancellationToken.IsCancellationRequested) {
|
---|
430 | throw new OperationCanceledException(cancellationToken);
|
---|
431 | }
|
---|
432 |
|
---|
433 | if (n < 1) {
|
---|
434 | itemp = -1;
|
---|
435 | } else if (n == 1) {
|
---|
436 | itemp = 0;
|
---|
437 | } else if (incx != 1) {
|
---|
438 | // code for increment not equal to 1
|
---|
439 |
|
---|
440 | dmax = (dx[dx_off] < 0.0) ? -dx[dx_off] : dx[dx_off];
|
---|
441 | ix = 1 + incx;
|
---|
442 | for (i = 0; i < n; i++) {
|
---|
443 | dtemp = (dx[ix + dx_off] < 0.0) ? -dx[ix + dx_off] : dx[ix + dx_off];
|
---|
444 | if (dtemp > dmax) {
|
---|
445 | itemp = i;
|
---|
446 | dmax = dtemp;
|
---|
447 | }
|
---|
448 | ix += incx;
|
---|
449 | }
|
---|
450 | } else {
|
---|
451 | // code for increment equal to 1
|
---|
452 |
|
---|
453 | itemp = 0;
|
---|
454 | dmax = (dx[dx_off] < 0.0) ? -dx[dx_off] : dx[dx_off];
|
---|
455 | for (i = 0; i < n; i++) {
|
---|
456 | dtemp = (dx[i + dx_off] < 0.0) ? -dx[i + dx_off] : dx[i + dx_off];
|
---|
457 | if (dtemp > dmax) {
|
---|
458 | itemp = i;
|
---|
459 | dmax = dtemp;
|
---|
460 | }
|
---|
461 | }
|
---|
462 | }
|
---|
463 | return (itemp);
|
---|
464 | }
|
---|
465 |
|
---|
466 | private double epslon(double x) {
|
---|
467 | double a, b, c, eps;
|
---|
468 |
|
---|
469 | a = 4.0e0 / 3.0e0;
|
---|
470 | eps = 0;
|
---|
471 | while (eps == 0) {
|
---|
472 | b = a - 1.0;
|
---|
473 | c = b + b + b;
|
---|
474 | eps = abs(c - 1.0);
|
---|
475 | }
|
---|
476 | return (eps * abs(x));
|
---|
477 | }
|
---|
478 |
|
---|
479 | private void dmxpy(int n1, double[] y, int n2, int ldm, double[] x, double[][] m) {
|
---|
480 | int j, i;
|
---|
481 |
|
---|
482 | // cleanup odd vector
|
---|
483 | for (j = 0; j < n2; j++) {
|
---|
484 | for (i = 0; i < n1; i++) {
|
---|
485 | y[i] += x[j] * m[j][i];
|
---|
486 | }
|
---|
487 | }
|
---|
488 | }
|
---|
489 | }
|
---|
490 | }
|
---|