Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman82.cs @ 17677

Last change on this file since 17677 was 17674, checked in by gkronber, 5 years ago

#3075 small changes while reviewing

File size: 3.8 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class Feynman82 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public Feynman82() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public Feynman82(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public Feynman82(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
31          "II.36.38 mom*B/(kb*T)+(mom*alpha*M)/(epsilon*c**2*kb*T) | {0} samples | noise ({1})",
32          trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString());
33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "f" : "f_noise"; } }
37
38    protected override string[] VariableNames {
39      get { return new[] {"mom", "B", "kb", "T", "alpha", "epsilon", "c", "M", noiseRatio == null ? "f" : "f_noise"}; }
40    }
41
42    protected override string[] AllowedInputVariables {
43      get { return new[] {"mom", "B", "kb", "T", "alpha", "epsilon", "c", "M"}; }
44    }
45
46    public int Seed { get; private set; }
47
48    protected override int TrainingPartitionStart { get { return 0; } }
49    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
50    protected override int TestPartitionStart { get { return trainingSamples; } }
51    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
52
53    protected override List<List<double>> GenerateValues() {
54      var rand = new MersenneTwister((uint) Seed);
55
56      var data    = new List<List<double>>();
57      var mom     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
58      var B       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
59      var kb      = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
60      var T       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
61      var alpha   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
62      var epsilon = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
63      var c       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
64      var M       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
65
66      var f = new List<double>();
67
68      data.Add(mom);
69      data.Add(B);
70      data.Add(kb);
71      data.Add(T);
72      data.Add(alpha);
73      data.Add(epsilon);
74      data.Add(c);
75      data.Add(M);
76      data.Add(f);
77
78      for (var i = 0; i < mom.Count; i++) {
79        var res = mom[i] * B[i] / (kb[i] * T[i]) +
80                  mom[i] * alpha[i] * M[i] / (epsilon[i] * Math.Pow(c[i], 2) * kb[i] * T[i]);
81        f.Add(res);
82      }
83
84      if (noiseRatio != null) {
85        var f_noise     = new List<double>();
86        var sigma_noise = (double) noiseRatio * f.StandardDeviationPop();
87        f_noise.AddRange(f.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
88        data.Remove(f);
89        data.Add(f_noise);
90      }
91
92      return data;
93    }
94  }
95}
Note: See TracBrowser for help on using the repository browser.