1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HEAL.Attic;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
29 | [StorableType("849e42d3-8934-419d-9aff-64ad81c06b67")]
|
---|
30 | public class Interval : IEquatable<Interval> {
|
---|
31 | [Storable]
|
---|
32 | public double LowerBound { get; private set; }
|
---|
33 | [Storable]
|
---|
34 | public double UpperBound { get; private set; }
|
---|
35 |
|
---|
36 | public double Width => UpperBound - LowerBound;
|
---|
37 |
|
---|
38 | [StorableConstructor]
|
---|
39 | protected Interval(StorableConstructorFlag _) { }
|
---|
40 |
|
---|
41 | /// <summary>
|
---|
42 | /// Creates an interval with given bounds, where lower bound must be smaller than
|
---|
43 | /// the upper bound. Floating point precision errors trough calculations are fixed by,
|
---|
44 | /// checking if the intervals are almost the same (E-12). If this is the case, the bounds
|
---|
45 | /// will be set to the bound closer to zero.
|
---|
46 | /// </summary>
|
---|
47 | /// <param name="lowerBound">Lower bound of the interval</param>
|
---|
48 | /// <param name="upperBound">Upper bound of the interval</param>
|
---|
49 | public Interval(double lowerBound, double upperBound) {
|
---|
50 | if (lowerBound.IsAlmost(upperBound)) {
|
---|
51 | //If the bounds go over zero
|
---|
52 | if (lowerBound <= 0 && upperBound >= 0) {
|
---|
53 | lowerBound = 0.0;
|
---|
54 | upperBound = 0.0;
|
---|
55 | //Interval is negative
|
---|
56 | } else if (upperBound < 0) {
|
---|
57 | lowerBound = upperBound;
|
---|
58 | //Interval is positive
|
---|
59 | } else {
|
---|
60 | upperBound = lowerBound;
|
---|
61 | }
|
---|
62 | }
|
---|
63 |
|
---|
64 | if (lowerBound > upperBound)
|
---|
65 | throw new ArgumentException("lowerBound must be smaller than or equal to upperBound.");
|
---|
66 |
|
---|
67 | this.LowerBound = lowerBound;
|
---|
68 | this.UpperBound = upperBound;
|
---|
69 | }
|
---|
70 |
|
---|
71 | private Interval(double v) : this(v, v) { }
|
---|
72 |
|
---|
73 | public bool Contains(double value) {
|
---|
74 | return LowerBound <= value && value <= UpperBound;
|
---|
75 | }
|
---|
76 |
|
---|
77 | public bool Contains(Interval other) {
|
---|
78 | if (double.IsNegativeInfinity(LowerBound) && double.IsPositiveInfinity(UpperBound)) return true;
|
---|
79 | if (other.LowerBound >= LowerBound && other.UpperBound <= UpperBound) return true;
|
---|
80 |
|
---|
81 | return false;
|
---|
82 | }
|
---|
83 |
|
---|
84 | public Tuple<Interval, Interval> Split() {
|
---|
85 | var midpoint = Width / 2;
|
---|
86 | var left = new Interval(LowerBound, LowerBound + midpoint - double.Epsilon);
|
---|
87 | var right = new Interval(LowerBound + midpoint, UpperBound);
|
---|
88 | return Tuple.Create(left, right);
|
---|
89 | }
|
---|
90 |
|
---|
91 | //Interval Intersection
|
---|
92 | public static Interval operator &(Interval lhs, Interval rhs) {
|
---|
93 | return new Interval(Math.Max(lhs.LowerBound, rhs.LowerBound), Math.Min(lhs.UpperBound, rhs.UpperBound));
|
---|
94 | }
|
---|
95 |
|
---|
96 | //Interval Union
|
---|
97 | public static Interval operator |(Interval lhs, Interval rhs) {
|
---|
98 | return new Interval(Math.Min(lhs.LowerBound, rhs.LowerBound), Math.Max(lhs.UpperBound, rhs.UpperBound));
|
---|
99 | }
|
---|
100 |
|
---|
101 | public override string ToString() {
|
---|
102 | return "Interval: [" + LowerBound + ", " + UpperBound + "]";
|
---|
103 | }
|
---|
104 |
|
---|
105 | public bool IsInfiniteOrUndefined {
|
---|
106 | get {
|
---|
107 | return double.IsInfinity(LowerBound) || double.IsInfinity(UpperBound) ||
|
---|
108 | double.IsNaN(LowerBound) || double.IsNaN(UpperBound);
|
---|
109 | }
|
---|
110 | }
|
---|
111 |
|
---|
112 | /// <summary>
|
---|
113 | /// True if the interval is positive without zero
|
---|
114 | /// </summary>
|
---|
115 | public bool IsPositive {
|
---|
116 | get => LowerBound > 0.0;
|
---|
117 | }
|
---|
118 |
|
---|
119 | /// <summary>
|
---|
120 | /// True if the interval is negative without zero
|
---|
121 | /// </summary>
|
---|
122 | public bool IsNegative {
|
---|
123 | get => UpperBound < 0.0;
|
---|
124 | }
|
---|
125 |
|
---|
126 | public static Interval GetInterval(IEnumerable<double> values) {
|
---|
127 | if (values == null) throw new ArgumentNullException("values");
|
---|
128 | if (!values.Any()) throw new ArgumentException($"No values are present.");
|
---|
129 |
|
---|
130 | var min = double.MaxValue;
|
---|
131 | var max = double.MinValue;
|
---|
132 |
|
---|
133 | foreach (var value in values) {
|
---|
134 | //If an value is NaN return an interval [NaN, NaN]
|
---|
135 | if (double.IsNaN(value)) return new Interval(double.NaN, double.NaN);
|
---|
136 |
|
---|
137 | if (value < min) min = value;
|
---|
138 | if (value > max) max = value;
|
---|
139 | }
|
---|
140 |
|
---|
141 | return new Interval(min, max);
|
---|
142 | }
|
---|
143 |
|
---|
144 | #region Equals, GetHashCode, == , !=
|
---|
145 | public bool Equals(Interval other) {
|
---|
146 | if (other == null)
|
---|
147 | return false;
|
---|
148 |
|
---|
149 | return (UpperBound.IsAlmost(other.UpperBound) || (double.IsNaN(UpperBound) && double.IsNaN(other.UpperBound)))
|
---|
150 | && (LowerBound.IsAlmost(other.LowerBound) || (double.IsNaN(LowerBound) && double.IsNaN(other.LowerBound)));
|
---|
151 | }
|
---|
152 |
|
---|
153 | public override bool Equals(object obj) {
|
---|
154 | return Equals(obj as Interval);
|
---|
155 | }
|
---|
156 |
|
---|
157 | public override int GetHashCode() {
|
---|
158 | return LowerBound.GetHashCode() ^ UpperBound.GetHashCode();
|
---|
159 | }
|
---|
160 |
|
---|
161 | public static bool operator ==(Interval interval1, Interval interval2) {
|
---|
162 | if (ReferenceEquals(interval1, null)) return ReferenceEquals(interval2, null);
|
---|
163 | return interval1.Equals(interval2);
|
---|
164 | }
|
---|
165 | public static bool operator !=(Interval interval1, Interval interval2) {
|
---|
166 | return !(interval1 == interval2);
|
---|
167 | }
|
---|
168 | #endregion
|
---|
169 |
|
---|
170 | #region operations
|
---|
171 |
|
---|
172 | // [x1,x2] + [y1,y2] = [x1 + y1,x2 + y2]
|
---|
173 | public static Interval Add(Interval a, Interval b) {
|
---|
174 | return new Interval(a.LowerBound + b.LowerBound, a.UpperBound + b.UpperBound);
|
---|
175 | }
|
---|
176 |
|
---|
177 | // [x1,x2] − [y1,y2] = [x1 − y2,x2 − y1]
|
---|
178 | public static Interval Subtract(Interval a, Interval b) {
|
---|
179 | return new Interval(a.LowerBound - b.UpperBound, a.UpperBound - b.LowerBound);
|
---|
180 | }
|
---|
181 |
|
---|
182 | // [x1,x2] * [y1,y2] = [min(x1*y1,x1*y2,x2*y1,x2*y2),max(x1*y1,x1*y2,x2*y1,x2*y2)]
|
---|
183 | public static Interval Multiply(Interval a, Interval b) {
|
---|
184 | double v1 = a.LowerBound * b.LowerBound;
|
---|
185 | double v2 = a.LowerBound * b.UpperBound;
|
---|
186 | double v3 = a.UpperBound * b.LowerBound;
|
---|
187 | double v4 = a.UpperBound * b.UpperBound;
|
---|
188 |
|
---|
189 | double min = Math.Min(Math.Min(v1, v2), Math.Min(v3, v4));
|
---|
190 | double max = Math.Max(Math.Max(v1, v2), Math.Max(v3, v4));
|
---|
191 | return new Interval(min, max);
|
---|
192 | }
|
---|
193 |
|
---|
194 | //Division by intervals containing 0 is implemented as defined in
|
---|
195 | //http://en.wikipedia.org/wiki/Interval_arithmetic
|
---|
196 | public static Interval Divide(Interval a, Interval b) {
|
---|
197 | if (b.Contains(0.0)) {
|
---|
198 | if (b.LowerBound.IsAlmost(0.0)) return Interval.Multiply(a, new Interval(1.0 / b.UpperBound, double.PositiveInfinity));
|
---|
199 | else if (b.UpperBound.IsAlmost(0.0)) return Interval.Multiply(a, new Interval(double.NegativeInfinity, 1.0 / b.LowerBound));
|
---|
200 | else return new Interval(double.NegativeInfinity, double.PositiveInfinity);
|
---|
201 | }
|
---|
202 | return Interval.Multiply(a, new Interval(1.0 / b.UpperBound, 1.0 / b.LowerBound));
|
---|
203 | }
|
---|
204 |
|
---|
205 | public static Interval Sine(Interval a) {
|
---|
206 | if (Math.Abs(a.UpperBound - a.LowerBound) >= Math.PI * 2) return new Interval(-1, 1);
|
---|
207 |
|
---|
208 | //divide the interval by PI/2 so that the optima lie at x element of N (0,1,2,3,4,...)
|
---|
209 | double Pihalf = Math.PI / 2;
|
---|
210 | Interval scaled = Interval.Divide(a, new Interval(Pihalf, Pihalf));
|
---|
211 | //move to positive scale
|
---|
212 | if (scaled.LowerBound < 0) {
|
---|
213 | int periodsToMove = Math.Abs((int)scaled.LowerBound / 4) + 1;
|
---|
214 | scaled = Interval.Add(scaled, new Interval(periodsToMove * 4, periodsToMove * 4));
|
---|
215 | }
|
---|
216 |
|
---|
217 | double scaledLowerBound = scaled.LowerBound % 4.0;
|
---|
218 | double scaledUpperBound = scaled.UpperBound % 4.0;
|
---|
219 | if (scaledUpperBound < scaledLowerBound) scaledUpperBound += 4.0;
|
---|
220 | List<double> sinValues = new List<double>();
|
---|
221 | sinValues.Add(Math.Sin(scaledLowerBound * Pihalf));
|
---|
222 | sinValues.Add(Math.Sin(scaledUpperBound * Pihalf));
|
---|
223 |
|
---|
224 | int startValue = (int)Math.Ceiling(scaledLowerBound);
|
---|
225 | while (startValue < scaledUpperBound) {
|
---|
226 | sinValues.Add(Math.Sin(startValue * Pihalf));
|
---|
227 | startValue += 1;
|
---|
228 | }
|
---|
229 |
|
---|
230 | return new Interval(sinValues.Min(), sinValues.Max());
|
---|
231 | }
|
---|
232 | public static Interval Cosine(Interval a) {
|
---|
233 | return Interval.Sine(Interval.Add(a, new Interval(Math.PI / 2, Math.PI / 2)));
|
---|
234 | }
|
---|
235 | public static Interval Tangens(Interval a) {
|
---|
236 | return Interval.Divide(Interval.Sine(a), Interval.Cosine(a));
|
---|
237 | }
|
---|
238 | public static Interval HyperbolicTangent(Interval a) {
|
---|
239 | return new Interval(Math.Tanh(a.LowerBound), Math.Tanh(a.UpperBound));
|
---|
240 | }
|
---|
241 |
|
---|
242 | public static Interval Logarithm(Interval a) {
|
---|
243 | return new Interval(Math.Log(a.LowerBound), Math.Log(a.UpperBound));
|
---|
244 | }
|
---|
245 | public static Interval Exponential(Interval a) {
|
---|
246 | return new Interval(Math.Exp(a.LowerBound), Math.Exp(a.UpperBound));
|
---|
247 | }
|
---|
248 |
|
---|
249 | public static Interval Square(Interval a) {
|
---|
250 | if (a.UpperBound <= 0) return new Interval(a.UpperBound * a.UpperBound, a.LowerBound * a.LowerBound); // interval is negative
|
---|
251 | else if (a.LowerBound >= 0) return new Interval(a.LowerBound * a.LowerBound, a.UpperBound * a.UpperBound); // interval is positive
|
---|
252 | else return new Interval(0, Math.Max(a.LowerBound * a.LowerBound, a.UpperBound * a.UpperBound)); // interval goes over zero
|
---|
253 | }
|
---|
254 |
|
---|
255 | public static Interval Cube(Interval a) {
|
---|
256 | return new Interval(Math.Pow(a.LowerBound, 3), Math.Pow(a.UpperBound, 3));
|
---|
257 | }
|
---|
258 |
|
---|
259 | /// <summary>
|
---|
260 | /// The interval contains both possible results of the calculated square root +-sqrt(x). That results in a wider
|
---|
261 | /// interval, but it contains all possible solutions.
|
---|
262 | /// </summary>
|
---|
263 | /// <param name="a">Interval to build square root from.</param>
|
---|
264 | /// <returns></returns>
|
---|
265 | public static Interval SquareRoot(Interval a) {
|
---|
266 | if (a.LowerBound < 0) return new Interval(double.NaN, double.NaN);
|
---|
267 | return new Interval(-Math.Sqrt(a.UpperBound), Math.Sqrt(a.UpperBound));
|
---|
268 | }
|
---|
269 |
|
---|
270 | public static Interval CubicRoot(Interval a) {
|
---|
271 | var lower = (a.LowerBound < 0) ? -Math.Pow(-a.LowerBound, 1d / 3d) : Math.Pow(a.LowerBound, 1d / 3d);
|
---|
272 | var upper = (a.UpperBound < 0) ? -Math.Pow(-a.UpperBound, 1d / 3d) : Math.Pow(a.UpperBound, 1d / 3d);
|
---|
273 |
|
---|
274 | return new Interval(lower, upper);
|
---|
275 | }
|
---|
276 |
|
---|
277 | public static Interval Absolute(Interval a) {
|
---|
278 | var absLower = Math.Abs(a.LowerBound);
|
---|
279 | var absUpper = Math.Abs(a.UpperBound);
|
---|
280 | var min = Math.Min(absLower, absUpper);
|
---|
281 | var max = Math.Max(absLower, absUpper);
|
---|
282 |
|
---|
283 | if (a.Contains(0.0)) {
|
---|
284 | min = 0.0;
|
---|
285 | }
|
---|
286 |
|
---|
287 | return new Interval(min, max);
|
---|
288 | }
|
---|
289 |
|
---|
290 | public static Interval AnalyticalQuotient(Interval a, Interval b) {
|
---|
291 | var dividend = a;
|
---|
292 | var divisor = Add(Square(b), new Interval(1.0, 1.0));
|
---|
293 | divisor = SquareRoot(divisor);
|
---|
294 |
|
---|
295 | var quotient = Divide(dividend, divisor);
|
---|
296 | return quotient;
|
---|
297 | }
|
---|
298 | #endregion
|
---|
299 |
|
---|
300 | #region arithmetic overloads
|
---|
301 | public static Interval operator +(Interval a, Interval b) => Add(a, b);
|
---|
302 | public static Interval operator +(Interval a, double b) => Add(a, new Interval(b));
|
---|
303 | public static Interval operator +(double a, Interval b) => Add(new Interval(a), b);
|
---|
304 | public static Interval operator -(Interval a, Interval b) => Subtract(a, b);
|
---|
305 | public static Interval operator -(Interval a, double b) => Subtract(a, new Interval(b));
|
---|
306 | public static Interval operator -(double a, Interval b) => Subtract(new Interval(a), b);
|
---|
307 | public static Interval operator -(Interval a) => Subtract(new Interval(0), a);
|
---|
308 | public static Interval operator *(Interval a, Interval b) => Multiply(a, b);
|
---|
309 | public static Interval operator *(Interval a, double b) => Multiply(a, new Interval(b));
|
---|
310 | public static Interval operator *(double a, Interval b) => Multiply(new Interval(a), b);
|
---|
311 | public static Interval operator /(Interval a, Interval b) => Divide(a, b);
|
---|
312 | public static Interval operator /(Interval a, double b) => Divide(a, new Interval(b));
|
---|
313 | public static Interval operator /(double a, Interval b) => Divide(new Interval(a), b);
|
---|
314 | public static Interval Exponential(double a) { return Exponential(new Interval(a)); }
|
---|
315 | public static Interval Logarithm(double a) { return Logarithm(new Interval(a)); }
|
---|
316 | public static Interval Sine(double a) { return Sine(new Interval(a)); }
|
---|
317 | public static Interval Cosine(double a) { return Cosine(new Interval(a)); }
|
---|
318 | public static Interval Tangens(double a) { return Tangens(new Interval(a)); }
|
---|
319 | public static Interval HyperbolicTangent(double a) { return HyperbolicTangent(new Interval(a)); }
|
---|
320 | public static Interval Square(double a) { return Square(new Interval(a)); }
|
---|
321 | public static Interval Cube(double a) { return Cube(new Interval(a)); }
|
---|
322 | public static Interval SquareRoot(double a) { return SquareRoot(new Interval(a)); }
|
---|
323 | public static Interval CubicRoot(double a) { return CubicRoot(new Interval(a)); }
|
---|
324 | public static Interval Absolute(double a) { return Absolute(new Interval(a)); }
|
---|
325 | public static Interval AnalyticQuotient(Interval a, double b) { return AnalyticalQuotient(a, new Interval(b)); }
|
---|
326 | public static Interval AnalyticQuotient(double a, Interval b) { return AnalyticalQuotient(new Interval(a), b); }
|
---|
327 | public static Interval AnalyticQuotient(double a, double b) { return AnalyticalQuotient(new Interval(a), new Interval(b)); }
|
---|
328 | #endregion
|
---|
329 | }
|
---|
330 | }
|
---|