Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3073_IA_constraint_splitting/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/TreeMatching/SymbolicExpressionTreeBottomUpSimilarityCalculator.cs

Last change on this file was 17180, checked in by swagner, 5 years ago

#2875: Removed years in copyrights

File size: 10.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Globalization;
25using System.Linq;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Optimization.Operators;
30using HEAL.Attic;
31
32using NodeMap = System.Collections.Generic.Dictionary<HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.ISymbolicExpressionTreeNode, HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.ISymbolicExpressionTreeNode>;
33
34namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
35  [StorableType("63ACB7A4-137F-468F-BE42-A4CA6B62C63B")]
36  [Item("SymbolicExpressionTreeBottomUpSimilarityCalculator", "A similarity calculator which uses the tree bottom-up distance as a similarity metric.")]
37  public class SymbolicExpressionTreeBottomUpSimilarityCalculator : SolutionSimilarityCalculator {
38    private readonly HashSet<string> commutativeSymbols = new HashSet<string> { "Addition", "Multiplication", "Average", "And", "Or", "Xor" };
39
40    public SymbolicExpressionTreeBottomUpSimilarityCalculator() { }
41    protected override bool IsCommutative { get { return true; } }
42
43    public bool MatchConstantValues { get; set; }
44    public bool MatchVariableWeights { get; set; }
45
46    [StorableConstructor]
47    protected SymbolicExpressionTreeBottomUpSimilarityCalculator(StorableConstructorFlag _) : base(_) {
48    }
49
50    protected SymbolicExpressionTreeBottomUpSimilarityCalculator(SymbolicExpressionTreeBottomUpSimilarityCalculator original, Cloner cloner)
51      : base(original, cloner) {
52    }
53
54    public override IDeepCloneable Clone(Cloner cloner) {
55      return new SymbolicExpressionTreeBottomUpSimilarityCalculator(this, cloner);
56    }
57
58    #region static methods
59    private static ISymbolicExpressionTreeNode ActualRoot(ISymbolicExpressionTree tree) {
60      return tree.Root.GetSubtree(0).GetSubtree(0);
61    }
62
63    public static double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool strict = false) {
64      return CalculateSimilarity(ActualRoot(t1), ActualRoot(t2), strict);
65    }
66
67    public static double CalculateSimilarity(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2, bool strict = false) {
68      var calculator = new SymbolicExpressionTreeBottomUpSimilarityCalculator { MatchConstantValues = strict, MatchVariableWeights = strict };
69      return CalculateSimilarity(n1, n2, strict);
70    }
71
72    public static Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool strict = false) {
73      return ComputeBottomUpMapping(ActualRoot(t1), ActualRoot(t2), strict);
74    }
75
76    public static Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2, bool strict = false) {
77      var calculator = new SymbolicExpressionTreeBottomUpSimilarityCalculator { MatchConstantValues = strict, MatchVariableWeights = strict };
78      return calculator.ComputeBottomUpMapping(n1, n2);
79    }
80    #endregion
81
82    public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) {
83      return CalculateSimilarity(t1, t2, out Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> map);
84    }
85
86    public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, out NodeMap map) {
87      if (t1 == t2) {
88        map = null;
89        return 1;
90      }
91      map = ComputeBottomUpMapping(t1, t2);
92      return 2.0 * map.Count / (t1.Length + t2.Length - 4); // -4 for skipping root and start symbols in the two trees
93    }
94
95    public override double CalculateSolutionSimilarity(IScope leftSolution, IScope rightSolution) {
96      if (leftSolution == rightSolution)
97        return 1.0;
98
99      var t1 = leftSolution.Variables[SolutionVariableName].Value as ISymbolicExpressionTree;
100      var t2 = rightSolution.Variables[SolutionVariableName].Value as ISymbolicExpressionTree;
101
102      if (t1 == null || t2 == null)
103        throw new ArgumentException("Cannot calculate similarity when one of the arguments is null.");
104
105      var similarity = CalculateSimilarity(t1, t2);
106      if (similarity > 1.0)
107        throw new Exception("Similarity value cannot be greater than 1");
108
109      return similarity;
110    }
111
112    public Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) {
113      return ComputeBottomUpMapping(ActualRoot(t1), ActualRoot(t2));
114    }
115
116    public Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2) {
117      var compactedGraph = Compact(n1, n2);
118
119      IEnumerable<ISymbolicExpressionTreeNode> Subtrees(ISymbolicExpressionTreeNode node, bool commutative) {
120        var subtrees = node.IterateNodesPrefix();
121        return commutative ? subtrees.OrderBy(x => compactedGraph[x].Hash) : subtrees;
122      }
123
124      var nodes1 = n1.IterateNodesPostfix().OrderByDescending(x => x.GetLength()); // by descending length so that largest subtrees are mapped first
125      var nodes2 = (List<ISymbolicExpressionTreeNode>)n2.IterateNodesPostfix();
126
127      var forward = new NodeMap();
128      var reverse = new NodeMap();
129
130      foreach (ISymbolicExpressionTreeNode v in nodes1) {
131        if (forward.ContainsKey(v))
132          continue;
133
134        var kv = compactedGraph[v];
135        var commutative = v.SubtreeCount > 1 && commutativeSymbols.Contains(kv.Label);
136
137        foreach (ISymbolicExpressionTreeNode w in nodes2) {
138          if (w.GetLength() != kv.Length || w.GetDepth() != kv.Depth || reverse.ContainsKey(w) || compactedGraph[w] != kv)
139            continue;
140
141          // map one whole subtree to the other
142          foreach (var t in Subtrees(v, commutative).Zip(Subtrees(w, commutative), Tuple.Create)) {
143            forward[t.Item1] = t.Item2;
144            reverse[t.Item2] = t.Item1;
145          }
146
147          break;
148        }
149      }
150
151      return forward;
152    }
153
154    /// <summary>
155    /// Creates a compact representation of the two trees as a directed acyclic graph
156    /// </summary>
157    /// <param name="n1">The root of the first tree</param>
158    /// <param name="n2">The root of the second tree</param>
159    /// <returns>The compacted DAG representing the two trees</returns>
160    private Dictionary<ISymbolicExpressionTreeNode, GraphNode> Compact(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2) {
161      var nodeMap = new Dictionary<ISymbolicExpressionTreeNode, GraphNode>(); // K
162      var labelMap = new Dictionary<string, GraphNode>(); // L
163
164      var nodes = n1.IterateNodesPostfix().Concat(n2.IterateNodesPostfix()); // the disjoint union F
165      var graph = new List<GraphNode>();
166
167      IEnumerable<GraphNode> Subtrees(GraphNode g, bool commutative) {
168        var subtrees = g.SymbolicExpressionTreeNode.Subtrees.Select(x => nodeMap[x]);
169        return commutative ? subtrees.OrderBy(x => x.Hash) : subtrees;
170      }
171
172      foreach (var node in nodes) {
173        var label = GetLabel(node);
174
175        if (node.SubtreeCount == 0) {
176          if (!labelMap.ContainsKey(label)) {
177            labelMap[label] = new GraphNode(node, label);
178          }
179          nodeMap[node] = labelMap[label];
180        } else {
181          var v = new GraphNode(node, label);
182          bool found = false;
183          var commutative = node.SubtreeCount > 1 && commutativeSymbols.Contains(label);
184
185          var vv = Subtrees(v, commutative);
186
187          foreach (var w in graph) {
188            if (v.Depth != w.Depth || v.SubtreeCount != w.SubtreeCount || v.Length != w.Length || v.Label != w.Label) {
189              continue;
190            }
191
192            var ww = Subtrees(w, commutative);
193            found = vv.SequenceEqual(ww);
194
195            if (found) {
196              nodeMap[node] = w;
197              break;
198            }
199          }
200          if (!found) {
201            nodeMap[node] = v;
202            graph.Add(v);
203          }
204        }
205      }
206      return nodeMap;
207    }
208
209    private string GetLabel(ISymbolicExpressionTreeNode node) {
210      if (node.SubtreeCount > 0)
211        return node.Symbol.Name;
212
213      if (node is ConstantTreeNode constant)
214        return MatchConstantValues ? constant.Value.ToString(CultureInfo.InvariantCulture) : constant.Symbol.Name;
215
216      if (node is VariableTreeNode variable)
217        return MatchVariableWeights ? variable.Weight + variable.VariableName : variable.VariableName;
218
219      return node.ToString();
220    }
221
222    private class GraphNode {
223      private GraphNode() { }
224
225      public GraphNode(ISymbolicExpressionTreeNode node, string label) {
226        SymbolicExpressionTreeNode = node;
227        Label = label;
228        Hash = GetHashCode();
229        Depth = node.GetDepth();
230        Length = node.GetLength();
231      }
232
233      public int Hash { get; }
234      public ISymbolicExpressionTreeNode SymbolicExpressionTreeNode { get; }
235      public string Label { get; }
236      public int Depth { get; }
237      public int SubtreeCount { get { return SymbolicExpressionTreeNode.SubtreeCount; } }
238      public int Length { get; }
239    }
240  }
241}
Note: See TracBrowser for help on using the repository browser.