[17479] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Author: Kaifeng Yang
|
---|
| 4 | *
|
---|
| 5 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 6 | *
|
---|
| 7 | * This file is part of HeuristicLab.
|
---|
| 8 | *\
|
---|
| 9 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 10 | * it under the terms of the GNU General Public License as published by
|
---|
| 11 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 12 | * (at your option) any later version.
|
---|
| 13 | *
|
---|
| 14 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 17 | * GNU General Public License for more details.
|
---|
| 18 | *
|
---|
| 19 | * You should have received a copy of the GNU General Public License
|
---|
| 20 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 21 | */
|
---|
| 22 |
|
---|
| 23 | // SMS-EMOA
|
---|
| 24 | /*
|
---|
| 25 | Implemenetation of a real-coded SMS_EMOA algorithm.
|
---|
| 26 | This implementation follows the description of: 'M. Emmerich, N. Beume, and B. Naujoks.
|
---|
| 27 | An EMO Algorithm Using the Hypervolume Measure as Selection Criterion.EMO 2005.'
|
---|
| 28 | */
|
---|
| 29 | #endregion
|
---|
| 30 |
|
---|
| 31 | using HEAL.Attic;
|
---|
| 32 | using HeuristicLab.Common;
|
---|
| 33 | using HeuristicLab.Core;
|
---|
| 34 | using HeuristicLab.Data;
|
---|
| 35 | using HeuristicLab.Random;
|
---|
| 36 | using System.Linq;
|
---|
| 37 | using System;
|
---|
| 38 | using CancellationToken = System.Threading.CancellationToken;
|
---|
| 39 | using HeuristicLab.Analysis;
|
---|
| 40 | using HeuristicLab.Problems.TestFunctions.MultiObjective;
|
---|
| 41 | using HeuristicLab.Optimization;
|
---|
| 42 | using System.Collections.Generic;
|
---|
| 43 |
|
---|
| 44 |
|
---|
| 45 | /* This algorithm is SMS-EMOA implementation on HL. The main structure and interfaces with HL are copied from MOEA/D on HL, which was written by Dr. Bogdan Burlacu. The S-metric selection operator was adapted from Kaifeng's MATLAB toolbox in SMS-EMOA. The computational complexity of HVC is AT LEAST $O (n^2 \log n)$ in 2-D and 3-D cases. HVC should definitely be reduced to $\Theta (n \times \log n)$.
|
---|
| 46 | *
|
---|
| 47 | * This algorithm assumes:
|
---|
| 48 | * 1. minimization problems. For maximization problems, it is better to add "-" symbol.
|
---|
| 49 | *
|
---|
| 50 | * This algorithm works on:
|
---|
| 51 | * 1. continuous, discrete, mixed-integer MOO problems. For different types of problems, the operators should be adjusted accordingly.
|
---|
| 52 | * 2. both multi-objective and many-objective problems. For many-objective problems, the bottleneck is the computational complexity of HV.
|
---|
| 53 | *
|
---|
| 54 | * This algorithm is the basic implementation of SMS-EMOA, proposed by Michael Emmerich et. al. Some potential improvements can be:
|
---|
| 55 | * 1. Dynamic reference point strategy
|
---|
| 56 | * 2. Normalized fitness value strategy ---- desirability function. See, Yali, Longmei, Kaifeng, Michael Emmerich CEC paper.
|
---|
| 57 | * 3. HVC calculation should definitely be improved, at least in the 2D and 3D cases.
|
---|
| 58 | * 4. multiple point strategy when $\lambda>1$
|
---|
| 59 | * 5. multiple reference points strategy, in ICNC 2016, Zhiwei Yang et. al.
|
---|
| 60 | * 6. HVC approximation by R2 for MANY OBJECTIVE cases, by Ishibushi 2019, IEEE TEC
|
---|
| 61 | * 7. Maybe: See maps
|
---|
| 62 | *
|
---|
| 63 | * Global parameters:
|
---|
| 64 | * 1. population
|
---|
| 65 | *
|
---|
| 66 | * Many thanks for Bogdan Burlacu and Johannes Karder, especially Bogdan for his explanation, help, and supports.
|
---|
| 67 | */
|
---|
| 68 |
|
---|
| 69 | namespace HeuristicLab.Algorithms.DynamicALPS {
|
---|
| 70 | // Format:
|
---|
| 71 | // The indexed name of the algorithm/item, Description of the algorithm/item in HL
|
---|
| 72 | [Item("DynamicALPS-MainLoop", "DynamicALPS-MainLoop implementation adapted from SMS-EMOA in HL.")]
|
---|
| 73 |
|
---|
| 74 | // Call "HeuristicLab.Core"
|
---|
| 75 | // Define the category of this class.
|
---|
| 76 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 125)]
|
---|
| 77 |
|
---|
| 78 | // Call "HEAL.Attic"
|
---|
| 79 | // Define GUID for this Class
|
---|
| 80 | [StorableType("A7F33D16-3495-43E8-943C-8A919123F541")]
|
---|
| 81 |
|
---|
| 82 | public class DynamicALPSAlgorithm : DynamicALPSAlgorithmBase {
|
---|
| 83 | public DynamicALPSAlgorithm() { }
|
---|
| 84 |
|
---|
| 85 | protected DynamicALPSAlgorithm(DynamicALPSAlgorithm original, Cloner cloner) : base(original, cloner) { }
|
---|
| 86 |
|
---|
| 87 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 88 | return new DynamicALPSAlgorithm(this, cloner);
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | [StorableConstructor]
|
---|
| 92 | protected DynamicALPSAlgorithm(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
| 93 |
|
---|
| 94 | protected override void Run(CancellationToken cancellationToken) {
|
---|
| 95 | if (previousExecutionState != ExecutionState.Paused) { // Call "base" class, DynamicALPSAlgorithmBase
|
---|
| 96 | InitializeAlgorithm(cancellationToken);
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 |
|
---|
| 100 | var populationSize = PopulationSize.Value;
|
---|
| 101 | bool[] maximization = ((BoolArray)Problem.MaximizationParameter.ActualValue).CloneAsArray();
|
---|
| 102 |
|
---|
| 103 | var crossover = Crossover;
|
---|
| 104 | var crossoverProbability = CrossoverProbability.Value;
|
---|
| 105 | var mutator = Mutator;
|
---|
| 106 | var mutationProbability = MutationProbability.Value;
|
---|
| 107 | var evaluator = Problem.Evaluator;
|
---|
| 108 | var analyzer = Analyzer;
|
---|
| 109 | var rand = RandomParameter.Value;
|
---|
| 110 |
|
---|
| 111 |
|
---|
| 112 | var maximumEvaluatedSolutions = MaximumEvaluatedSolutions.Value;
|
---|
| 113 |
|
---|
| 114 |
|
---|
| 115 | int lambda = 1; // the size of offspring
|
---|
| 116 |
|
---|
| 117 |
|
---|
| 118 | int nLayerALPS = ALPSLayers.Value;
|
---|
| 119 | int counterLayerALPS = 0;
|
---|
| 120 |
|
---|
| 121 | // IMPROVE: ........
|
---|
| 122 | int[] ageGapArray = new int[] { 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
|
---|
| 123 | int[] numberDiscard = new int[10];
|
---|
| 124 |
|
---|
| 125 |
|
---|
| 126 |
|
---|
| 127 | activeLayer = new bool[nLayerALPS];
|
---|
| 128 | int[][] ageMatrix = new int[nLayerALPS][]; // layer * population size
|
---|
| 129 |
|
---|
| 130 |
|
---|
| 131 |
|
---|
| 132 | // cancellation token for the inner operations which should not be immediately cancelled
|
---|
| 133 | var innerToken = new CancellationToken();
|
---|
| 134 |
|
---|
| 135 |
|
---|
| 136 | // run some analyzer on each layer (for now calculate scatter plots )
|
---|
| 137 | List<Tuple<int, ScatterPlotAnalyzer>> layerAnalyzers;
|
---|
| 138 |
|
---|
| 139 |
|
---|
| 140 | // 12022020
|
---|
| 141 | layerPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
| 142 | layerOffspringPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
| 143 | layerJointPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
| 144 | layerDiscardPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
| 145 |
|
---|
| 146 |
|
---|
| 147 | layerPopulation[counterLayerALPS] = new IDynamicALPSSolution[populationSize];
|
---|
| 148 | // BUG: The size of offspring should vary in different layers!!!!
|
---|
| 149 | layerOffspringPopulation[counterLayerALPS] = new IDynamicALPSSolution[lambda];
|
---|
| 150 | layerDiscardPopulation[counterLayerALPS] = new IDynamicALPSSolution[populationSize];
|
---|
| 151 | population.CopyTo(layerPopulation[counterLayerALPS], 0);
|
---|
| 152 |
|
---|
| 153 | activeLayer[counterLayerALPS] = true;
|
---|
| 154 | for (int i = 0; i < nLayerALPS; i++) {
|
---|
| 155 | if (i == 0) {
|
---|
| 156 | activeLayer[i] = true;
|
---|
| 157 | }
|
---|
| 158 | else { activeLayer[i] = false; }
|
---|
| 159 | numberDiscard[i] = 0;
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | // Mainloop
|
---|
| 163 | while (evaluatedSolutions < maximumEvaluatedSolutions && !cancellationToken.IsCancellationRequested) {
|
---|
| 164 | for (int i = 0; i < nLayerALPS; i++) { // loop for every layer
|
---|
| 165 | int discardedIndividualIndex = 0;
|
---|
| 166 | if (activeLayer[i] == true) { // check the layer is active or not.
|
---|
| 167 | evaluatedSolutions = SMSEMOA(populationSize, lambda, i);
|
---|
| 168 | if (evaluatedSolutions >= maximumEvaluatedSolutions) { break; } // check evaluation budget
|
---|
| 169 | ageMatrix[i] = layerJointPopulation[i].Select(x => x.Age).ToArray(); // get age info of the current layer joint population
|
---|
| 170 | if (ageMatrix[i].Max() > ageGapArray[i]) { // mature: moving
|
---|
| 171 | discardedIndividualIndex = ageMatrix[i].ToList().IndexOf(ageMatrix[i].Max()); // BUG when two individual has the same maximal age???? NOT POSSBILE IN SMS-EMOA
|
---|
| 172 | layerDiscardPopulation[i][numberDiscard[i]] = layerJointPopulation[i][discardedIndividualIndex]; // move the individual to the next layer
|
---|
| 173 | layerJointPopulation[i].Where((x, idx) => idx != discardedIndividualIndex).ToArray().CopyTo(layerPopulation[i], 0); // discard the indivudal in the current layer
|
---|
| 174 | numberDiscard[i] += 1;
|
---|
| 175 | if (activeLayer[i + 1] == false) { // next layer is not active // bug, if i == number of layer, out of range .
|
---|
| 176 | if (numberDiscard[i] == populationSize) {
|
---|
| 177 | InitializeLayer(i + 1, populationSize, lambda); // initilizae the layerPopulation for the next layer && ACTIVE FLAGE
|
---|
| 178 | layerDiscardPopulation[i].CopyTo(layerPopulation[i + 1], 0);
|
---|
| 179 | numberDiscard[i] = 0;
|
---|
| 180 | }
|
---|
| 181 | else {
|
---|
| 182 | // number of matured individuals < population size in the next layer
|
---|
| 183 | }
|
---|
| 184 | }
|
---|
| 185 | else { // next layer is active
|
---|
| 186 | layerPopulation[i+1].CopyTo(layerJointPopulation[i + 1], 0);
|
---|
| 187 | layerJointPopulation[i].Where((x, idx) => idx == discardedIndividualIndex).ToArray().CopyTo(layerJointPopulation[i + 1], populationSize);
|
---|
| 188 | SmetricSelection(lambda, i + 1); // AGE and HVC
|
---|
| 189 | numberDiscard[i] = 0;
|
---|
| 190 | }
|
---|
| 191 | }
|
---|
| 192 | layerPopulation[i].CopyTo(population, 0); // BUG: should copy all the active layers to population.
|
---|
| 193 | }
|
---|
| 194 | else {
|
---|
| 195 | // Some thing wrong? lol nothing wrong here ^_^
|
---|
| 196 | }
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 |
|
---|
| 200 |
|
---|
| 201 | // run analyzer
|
---|
| 202 | var analyze = executionContext.CreateChildOperation(analyzer, globalScope);
|
---|
| 203 | ExecuteOperation(executionContext, innerToken, analyze);
|
---|
| 204 | // update Pareto-front approximation sets
|
---|
| 205 | UpdateParetoFronts();
|
---|
| 206 | // Show some results in the GUI.
|
---|
| 207 | Results.AddOrUpdateResult("IdealPoint", new DoubleArray(IdealPoint));
|
---|
| 208 | Results.AddOrUpdateResult("NadirPoint", new DoubleArray(NadirPoint));
|
---|
| 209 | Results.AddOrUpdateResult("Evaluated Solutions", new IntValue(evaluatedSolutions));
|
---|
| 210 |
|
---|
| 211 | var allLayerResults = new ResultCollection();
|
---|
| 212 | Results.AddOrUpdateResult("LayerResults", allLayerResults);
|
---|
| 213 |
|
---|
| 214 | // run layer analyzers
|
---|
| 215 | for (int i = 0; i < activeLayer.Length; ++i) {
|
---|
| 216 | if (!activeLayer[i]) continue;
|
---|
| 217 | var scope = new Scope($"Layer {i}");
|
---|
| 218 | var layer = layerPopulation[i];
|
---|
| 219 | var layerResults = new ResultCollection();
|
---|
| 220 | allLayerResults.Add(new Result(scope.Name, layerResults));
|
---|
| 221 |
|
---|
| 222 | var problem = (MultiObjectiveTestFunctionProblem)Problem;
|
---|
| 223 | //scope.Variables.Add(new Variable("Individuals", new ItemArray<IScope>(layer.Select(x => (IScope)x.Individual))));
|
---|
| 224 | //scope.Variables.Add(new Variable("Qualities", new ItemArray<DoubleArray>(layer.Select(x => new DoubleArray(x.Qualities)))));
|
---|
| 225 | scope.SubScopes.AddRange(layer.Select(x => (IScope)x.Individual));
|
---|
| 226 | scope.Variables.Add(new Variable("Results", layerResults));
|
---|
| 227 | scope.Variables.Add(new Variable("TestFunction", problem.TestFunction));
|
---|
| 228 | var scatterPlotAnalyzer = new ScatterPlotAnalyzer();
|
---|
| 229 | scatterPlotAnalyzer.IndividualsParameter.ActualName = "RealVector";
|
---|
| 230 | var scattetPlotAnalyzerContext = executionContext.CreateChildOperation(scatterPlotAnalyzer, scope);
|
---|
| 231 | ExecuteOperation(executionContext, CancellationToken.None, scattetPlotAnalyzerContext);
|
---|
| 232 | scope.SubScopes.Clear();
|
---|
| 233 | scope.Variables.Clear();
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 | // Update globalScope
|
---|
| 237 | globalScope.SubScopes.Replace(population.Select(x => (IScope)x.Individual));
|
---|
| 238 |
|
---|
| 239 |
|
---|
| 240 | //// intilize the population for the next layer
|
---|
| 241 | //counterLayerALPS += 1;
|
---|
| 242 | //layerPopulation[counterLayerALPS] = new IDynamicALPSSolution[populationSize];
|
---|
| 243 | //layerPopulation[counterLayerALPS-1].CopyTo(layerPopulation[counterLayerALPS], 0); // DETELTE DUBGU
|
---|
| 244 | //// BUG lambda should be different~~~~!!!!
|
---|
| 245 | //layerOffspringPopulation[counterLayerALPS] = new IDynamicALPSSolution[lambda];
|
---|
| 246 | }
|
---|
| 247 | }
|
---|
| 248 | }
|
---|
| 249 | }
|
---|