Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3057_DynamicALPS/TestProblems/oesr-alps-master/HeuristicLab.Algorithms.OESRALPS/GeneticAlgorithmMainLoop.cs

Last change on this file was 17479, checked in by kyang, 5 years ago

#3057

  1. upload the latest version of ALPS with SMS-EMOA
  2. upload the related dynamic test problems (dynamic, single-objective symbolic regression), written by David Daninel.
File size: 13.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Common;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
25using HeuristicLab.Operators;
26using HeuristicLab.Optimization.Operators;
27using HeuristicLab.Parameters;
28using HEAL.Attic;
29using HeuristicLab.Selection;
30using HeuristicLab.Optimization;
31
32namespace HeuristicLab.Algorithms.SWGA {
33  /// <summary>
34  /// An operator which represents the main loop of a genetic algorithm.
35  /// </summary>
36  [Item("GeneticAlgorithmMainLoop", "An operator which represents the main loop of a genetic algorithm.")]
37  [StorableType("78FFFD80-9708-4FE7-9092-16DA0B51D33B")]
38    public sealed class GeneticAlgorithmMainLoop : AlgorithmOperator {
39    #region Parameter properties
40    public ValueLookupParameter<IRandom> RandomParameter {
41      get { return (ValueLookupParameter<IRandom>)Parameters["GlobalRandom"]; }
42    }
43    public ValueLookupParameter<BoolValue> MaximizationParameter {
44      get { return (ValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
45    }
46    public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
47      get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
48    }
49    public ValueLookupParameter<IOperator> SelectorParameter {
50      get { return (ValueLookupParameter<IOperator>)Parameters["Selector"]; }
51    }
52    public ValueLookupParameter<IOperator> CrossoverParameter {
53      get { return (ValueLookupParameter<IOperator>)Parameters["Crossover"]; }
54    }
55    public ValueLookupParameter<PercentValue> MutationProbabilityParameter {
56      get { return (ValueLookupParameter<PercentValue>)Parameters["MutationProbability"]; }
57    }
58    public ValueLookupParameter<IOperator> MutatorParameter {
59      get { return (ValueLookupParameter<IOperator>)Parameters["Mutator"]; }
60    }
61    public ValueLookupParameter<IOperator> EvaluatorParameter {
62      get { return (ValueLookupParameter<IOperator>)Parameters["Evaluator"]; }
63    }
64    public ValueLookupParameter<IntValue> ElitesParameter {
65      get { return (ValueLookupParameter<IntValue>)Parameters["Elites"]; }
66    }
67    public IValueLookupParameter<BoolValue> ReevaluateElitesParameter {
68      get { return (IValueLookupParameter<BoolValue>)Parameters["ReevaluateElites"]; }
69    }
70    public ValueLookupParameter<IntValue> MaximumGenerationsParameter {
71      get { return (ValueLookupParameter<IntValue>)Parameters["MaximumGenerations"]; }
72    }
73    public ValueLookupParameter<VariableCollection> ResultsParameter {
74      get { return (ValueLookupParameter<VariableCollection>)Parameters["Results"]; }
75    }
76    public ValueLookupParameter<IOperator> AnalyzerParameter {
77      get { return (ValueLookupParameter<IOperator>)Parameters["Analyzer"]; }
78    }
79    public ValueLookupParameter<IntValue> EvaluatedSolutionsParameter {
80      get { return (ValueLookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
81    }
82    public ValueLookupParameter<IntValue> PopulationSizeParameter {
83      get { return (ValueLookupParameter<IntValue>)Parameters["PopulationSize"]; }
84    }
85    private ScopeParameter CurrentScopeParameter {
86      get { return (ScopeParameter)Parameters["CurrentScope"]; }
87    }
88
89    public IScope CurrentScope {
90      get { return CurrentScopeParameter.ActualValue; }
91    }
92
93    public IValueLookupParameter<IOperator> TerminatorParameter {
94      get { return (IValueLookupParameter<IOperator>)Parameters["Terminator"]; }
95    }
96
97    public IValueLookupParameter<IOperator> SlidingWindowParameter {
98      get { return (IValueLookupParameter<IOperator>)Parameters["SlidingWindow"]; }
99    }
100    #endregion
101
102    [StorableConstructor]
103    private GeneticAlgorithmMainLoop(StorableConstructorFlag _) : base(_) { }
104    private GeneticAlgorithmMainLoop(GeneticAlgorithmMainLoop original, Cloner cloner)
105      : base(original, cloner) {
106    }
107    public override IDeepCloneable Clone(Cloner cloner) {
108      return new GeneticAlgorithmMainLoop(this, cloner);
109    }
110    public GeneticAlgorithmMainLoop()
111      : base() {
112      Initialize();
113    }
114
115    private void Initialize() {
116      #region Create parameters
117      Parameters.Add(new ValueLookupParameter<IRandom>("GlobalRandom", "A pseudo random number generator."));
118      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
119      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
120      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
121      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
122      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
123      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
124      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
125      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
126      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
127      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
128      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
129      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
130      Parameters.Add(new ValueLookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
131      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population."));
132      Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the genetic algorithm should be applied."));
133      Parameters.Add(new ValueLookupParameter<IOperator>("Terminator", "The termination criteria that defines if the algorithm should continue or stop"));
134      Parameters.Add(new ValueLookupParameter<IOperator>("SlidingWindow", "Operator which moves a sliding window over the training data."));
135      #endregion
136
137      #region Create operators
138      VariableCreator variableCreator = new VariableCreator();
139      ResultsCollector resultsCollector1 = new ResultsCollector();
140      Placeholder analyzer1 = new Placeholder();
141      Placeholder slidingWindow = new Placeholder() { Name = "Sliding Window (Placeholder)" };
142      Placeholder selector = new Placeholder();
143      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
144      ChildrenCreator childrenCreator = new ChildrenCreator();
145      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
146      Placeholder crossover = new Placeholder();
147      StochasticBranch stochasticBranch = new StochasticBranch();
148      Placeholder mutator = new Placeholder();
149      SubScopesRemover subScopesRemover = new SubScopesRemover();
150      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
151      Placeholder evaluator = new Placeholder();
152      SubScopesCounter subScopesCounter = new SubScopesCounter();
153      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
154      BestSelector bestSelector = new BestSelector();
155      RightReducer rightReducer = new RightReducer();
156      MergingReducer mergingReducer = new MergingReducer();
157      IntCounter intCounter = new IntCounter();
158      Comparator comparator = new Comparator();
159      Placeholder analyzer2 = new Placeholder();
160      TerminationOperator termination = new TerminationOperator();
161      ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();
162
163      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class GeneticAlgorithm expects this to be called Generations
164
165      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
166      resultsCollector1.ResultsParameter.ActualName = "Results";
167
168      analyzer1.Name = "Analyzer";
169      analyzer1.OperatorParameter.ActualName = "Analyzer";
170
171      selector.Name = "Selector";
172      selector.OperatorParameter.ActualName = "Selector";
173
174      childrenCreator.ParentsPerChild = new IntValue(2);
175
176      crossover.Name = "Crossover";
177      crossover.OperatorParameter.ActualName = "Crossover";
178
179      stochasticBranch.ProbabilityParameter.ActualName = "MutationProbability";
180      stochasticBranch.RandomParameter.ActualName = "Random";
181
182      mutator.Name = "Mutator";
183      mutator.OperatorParameter.ActualName = "Mutator";
184
185      subScopesRemover.RemoveAllSubScopes = true;
186
187      uniformSubScopesProcessor2.Parallel.Value = true;
188
189      evaluator.Name = "Evaluator";
190      evaluator.OperatorParameter.ActualName = "Evaluator";
191
192      subScopesCounter.Name = "Increment EvaluatedSolutions";
193      subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
194
195      bestSelector.CopySelected = new BoolValue(false);
196      bestSelector.MaximizationParameter.ActualName = "Maximization";
197      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = "Elites";
198      bestSelector.QualityParameter.ActualName = "Quality";
199
200      intCounter.Increment = new IntValue(1);
201      intCounter.ValueParameter.ActualName = "Generations";
202
203      comparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
204      comparator.LeftSideParameter.ActualName = "Generations";
205      comparator.ResultParameter.ActualName = "Terminate";
206      comparator.RightSideParameter.ActualName = "MaximumGenerations";
207
208      analyzer2.Name = "Analyzer";
209      analyzer2.OperatorParameter.ActualName = "Analyzer";
210
211      termination.TerminatorParameter.ActualName = TerminatorParameter.Name;
212      slidingWindow.OperatorParameter.ActualName = SlidingWindowParameter.Name;
213     
214
215      reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
216      reevaluateElitesBranch.Name = "Reevaluate elites ?";
217      #endregion
218
219      #region Create operator graph
220      OperatorGraph.InitialOperator = variableCreator;
221      variableCreator.Successor = resultsCollector1;
222      resultsCollector1.Successor = analyzer1;
223      analyzer1.Successor = slidingWindow;
224      slidingWindow.Successor = selector;
225      selector.Successor = subScopesProcessor1;
226      subScopesProcessor1.Operators.Add(new EmptyOperator());
227      subScopesProcessor1.Operators.Add(childrenCreator);
228      subScopesProcessor1.Successor = subScopesProcessor2;
229      childrenCreator.Successor = uniformSubScopesProcessor1;
230      uniformSubScopesProcessor1.Operator = crossover;
231      uniformSubScopesProcessor1.Successor = uniformSubScopesProcessor2;
232      crossover.Successor = stochasticBranch;
233      stochasticBranch.FirstBranch = mutator;
234      stochasticBranch.SecondBranch = null;
235      stochasticBranch.Successor = subScopesRemover;
236      mutator.Successor = null;
237      subScopesRemover.Successor = null;
238      uniformSubScopesProcessor2.Operator = evaluator;
239      uniformSubScopesProcessor2.Successor = subScopesCounter;
240      evaluator.Successor = null;
241      subScopesCounter.Successor = null;
242      subScopesProcessor2.Operators.Add(bestSelector);
243      subScopesProcessor2.Operators.Add(new EmptyOperator());
244      subScopesProcessor2.Successor = mergingReducer;
245      bestSelector.Successor = rightReducer;
246      rightReducer.Successor = reevaluateElitesBranch;
247      reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor2;
248      reevaluateElitesBranch.FalseBranch = null;
249      reevaluateElitesBranch.Successor = null;
250      mergingReducer.Successor = intCounter;
251      intCounter.Successor = comparator;
252      comparator.Successor = analyzer2;
253      analyzer2.Successor = termination;
254      termination.ContinueBranch = slidingWindow;
255      #endregion
256    }
257
258    [StorableHook(HookType.AfterDeserialization)]
259    private void AfterDeserialization() {
260      // BackwardsCompatibility3.3
261      #region Backwards compatible code, remove with 3.4
262      if (!Parameters.ContainsKey("ReevaluateElites")) {
263        Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
264      }
265      #endregion
266    }
267
268    public override IOperation Apply() {
269      if (CrossoverParameter.ActualValue == null)
270        return null;
271      return base.Apply();
272    }
273  }
274}
Note: See TracBrowser for help on using the repository browser.