1 | using HEAL.Attic;
|
---|
2 | using HeuristicLab.Common;
|
---|
3 | using HeuristicLab.Core;
|
---|
4 | using HeuristicLab.Data;
|
---|
5 | using HeuristicLab.Parameters;
|
---|
6 | using HeuristicLab.Problems.DataAnalysis;
|
---|
7 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
8 | using System;
|
---|
9 | using System.Collections.Generic;
|
---|
10 | using HeuristicLab.Analysis;
|
---|
11 | using System.Linq;
|
---|
12 | using System.Text;
|
---|
13 | using System.Threading.Tasks;
|
---|
14 | using HeuristicLab.Optimization;
|
---|
15 |
|
---|
16 | namespace HeuristicLab.Algorithms.OESRALPS.Analyzers
|
---|
17 | {
|
---|
18 | [Item("SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer", "Calculates and tracks correlation of training and validation fitness of symbolic regression models.")]
|
---|
19 | [StorableType("AE1F0B73-BEB1-47AF-8ECF-DBCFA32AA5B9")]
|
---|
20 | public abstract class SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer<T, U>
|
---|
21 | : SymbolicDataAnalysisSingleObjectiveLayerValidationAnalyzer<T, U>
|
---|
22 | where T : class, ISymbolicDataAnalysisSingleObjectiveEvaluator<U>
|
---|
23 | where U : class, IDataAnalysisProblemData
|
---|
24 | {
|
---|
25 | private const string TrainingValidationCorrelationParameterName = "Training and validation fitness correlation";
|
---|
26 | private const string TrainingValidationCorrelationTableParameterName = "Training and validation fitness correlation table";
|
---|
27 | private const string LowerCorrelationThresholdParameterName = "LowerCorrelationThreshold";
|
---|
28 | private const string UpperCorrelationThresholdParameterName = "UpperCorrelationThreshold";
|
---|
29 | private const string OverfittingParameterName = "IsOverfitting";
|
---|
30 |
|
---|
31 | #region parameter properties
|
---|
32 | public ILookupParameter<DoubleValue> TrainingValidationQualityCorrelationParameter {
|
---|
33 | get { return (ILookupParameter<DoubleValue>)Parameters[TrainingValidationCorrelationParameterName]; }
|
---|
34 | }
|
---|
35 | public ILookupParameter<DataTable> TrainingValidationQualityCorrelationTableParameter {
|
---|
36 | get { return (ILookupParameter<DataTable>)Parameters[TrainingValidationCorrelationTableParameterName]; }
|
---|
37 | }
|
---|
38 | public IValueLookupParameter<DoubleValue> LowerCorrelationThresholdParameter {
|
---|
39 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerCorrelationThresholdParameterName]; }
|
---|
40 | }
|
---|
41 | public IValueLookupParameter<DoubleValue> UpperCorrelationThresholdParameter {
|
---|
42 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperCorrelationThresholdParameterName]; }
|
---|
43 | }
|
---|
44 | public ILookupParameter<BoolValue> OverfittingParameter {
|
---|
45 | get { return (ILookupParameter<BoolValue>)Parameters[OverfittingParameterName]; }
|
---|
46 | }
|
---|
47 | #endregion
|
---|
48 |
|
---|
49 | [StorableConstructor]
|
---|
50 | protected SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
51 | protected SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer(SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer<T, U> original, Cloner cloner) : base(original, cloner) { }
|
---|
52 | public SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer()
|
---|
53 | : base()
|
---|
54 | {
|
---|
55 | Parameters.Add(new LookupParameter<DoubleValue>(TrainingValidationCorrelationParameterName, "Correlation of training and validation fitnesses"));
|
---|
56 | Parameters.Add(new LookupParameter<DataTable>(TrainingValidationCorrelationTableParameterName, "Data table of training and validation fitness correlation values over the whole run."));
|
---|
57 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerCorrelationThresholdParameterName, "Lower threshold for correlation value that marks the boundary from non-overfitting to overfitting.", new DoubleValue(0.65)));
|
---|
58 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperCorrelationThresholdParameterName, "Upper threshold for correlation value that marks the boundary from overfitting to non-overfitting.", new DoubleValue(0.75)));
|
---|
59 | Parameters.Add(new LookupParameter<BoolValue>(OverfittingParameterName, "Boolean indicator for overfitting."));
|
---|
60 | }
|
---|
61 |
|
---|
62 | public override IOperation Apply()
|
---|
63 | {
|
---|
64 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
65 | if (!rows.Any()) return base.Apply();
|
---|
66 |
|
---|
67 | double[] trainingQuality = QualityParameter.ActualValue.Select(x => x.Value).ToArray();
|
---|
68 | var problemData = ProblemDataParameter.ActualValue;
|
---|
69 | var evaluator = EvaluatorParameter.ActualValue;
|
---|
70 |
|
---|
71 | // evaluate on validation partition
|
---|
72 | IExecutionContext childContext = (IExecutionContext)ExecutionContext.CreateChildOperation(evaluator);
|
---|
73 | double[] validationQuality = SymbolicExpressionTree
|
---|
74 | .Select(t => evaluator.Evaluate(childContext, t, problemData, rows))
|
---|
75 | .ToArray();
|
---|
76 |
|
---|
77 | double r = 0.0;
|
---|
78 | try
|
---|
79 | {
|
---|
80 | r = alglib.spearmancorr2(trainingQuality, validationQuality);
|
---|
81 | }
|
---|
82 | catch (alglib.alglibexception)
|
---|
83 | {
|
---|
84 | r = 0.0;
|
---|
85 | }
|
---|
86 |
|
---|
87 | var results = ResultCollection;
|
---|
88 | #region Add Parameters
|
---|
89 | if (!results.ContainsKey(TrainingValidationQualityCorrelationTableParameter.Name))
|
---|
90 | ResultCollectionParameter.ActualValue.Add(new Result(TrainingValidationQualityCorrelationTableParameter.Name, TrainingValidationQualityCorrelationTableParameter.Description, typeof(DataTable)));
|
---|
91 | if (!results.ContainsKey(OverfittingParameter.Name))
|
---|
92 | results.Add(new Result(OverfittingParameter.Name, OverfittingParameter.Description, typeof(BoolValue)));
|
---|
93 | #endregion
|
---|
94 |
|
---|
95 | TrainingValidationQualityCorrelationParameter.ActualValue = new DoubleValue(r);
|
---|
96 |
|
---|
97 | if (TrainingValidationQualityCorrelationTableParameter.ActualValue == null)
|
---|
98 | {
|
---|
99 | var dataTable = new DataTable(TrainingValidationQualityCorrelationTableParameter.Name, TrainingValidationQualityCorrelationTableParameter.Description);
|
---|
100 | dataTable.Rows.Add(new DataRow(TrainingValidationQualityCorrelationParameter.Name, TrainingValidationQualityCorrelationParameter.Description));
|
---|
101 | dataTable.Rows[TrainingValidationQualityCorrelationParameter.Name].VisualProperties.StartIndexZero = true;
|
---|
102 | TrainingValidationQualityCorrelationTableParameter.ActualValue = dataTable;
|
---|
103 | }
|
---|
104 |
|
---|
105 | TrainingValidationQualityCorrelationTableParameter.ActualValue.Rows[TrainingValidationQualityCorrelationParameter.Name].Values.Add(r);
|
---|
106 |
|
---|
107 | if (OverfittingParameter.ActualValue != null && OverfittingParameter.ActualValue.Value)
|
---|
108 | {
|
---|
109 | // overfitting == true
|
---|
110 | // => r must reach the upper threshold to switch back to non-overfitting state
|
---|
111 | OverfittingParameter.ActualValue = new BoolValue(r < UpperCorrelationThresholdParameter.ActualValue.Value);
|
---|
112 | }
|
---|
113 | else
|
---|
114 | {
|
---|
115 | // overfitting == false
|
---|
116 | // => r must drop below lower threshold to switch to overfitting state
|
---|
117 | OverfittingParameter.ActualValue = new BoolValue(r < LowerCorrelationThresholdParameter.ActualValue.Value);
|
---|
118 | }
|
---|
119 |
|
---|
120 | results[TrainingValidationQualityCorrelationTableParameter.Name].Value = TrainingValidationQualityCorrelationTableParameter.ActualValue;
|
---|
121 | results[OverfittingParameter.Name].Value = OverfittingParameter.ActualValue;
|
---|
122 |
|
---|
123 | return base.Apply();
|
---|
124 | }
|
---|
125 | }
|
---|
126 | }
|
---|