[17479] | 1 | using HEAL.Attic;
|
---|
| 2 | using HeuristicLab.Common;
|
---|
| 3 | using HeuristicLab.Core;
|
---|
| 4 | using HeuristicLab.Data;
|
---|
| 5 | using HeuristicLab.Parameters;
|
---|
| 6 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 7 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 8 | using System;
|
---|
| 9 | using System.Collections.Generic;
|
---|
| 10 | using HeuristicLab.Analysis;
|
---|
| 11 | using System.Linq;
|
---|
| 12 | using System.Text;
|
---|
| 13 | using System.Threading.Tasks;
|
---|
| 14 | using HeuristicLab.Optimization;
|
---|
| 15 |
|
---|
| 16 | namespace HeuristicLab.Algorithms.OESRALPS.Analyzers
|
---|
| 17 | {
|
---|
| 18 | [Item("SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer", "Calculates and tracks correlation of training and validation fitness of symbolic regression models.")]
|
---|
| 19 | [StorableType("AE1F0B73-BEB1-47AF-8ECF-DBCFA32AA5B9")]
|
---|
| 20 | public abstract class SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer<T, U>
|
---|
| 21 | : SymbolicDataAnalysisSingleObjectiveLayerValidationAnalyzer<T, U>
|
---|
| 22 | where T : class, ISymbolicDataAnalysisSingleObjectiveEvaluator<U>
|
---|
| 23 | where U : class, IDataAnalysisProblemData
|
---|
| 24 | {
|
---|
| 25 | private const string TrainingValidationCorrelationParameterName = "Training and validation fitness correlation";
|
---|
| 26 | private const string TrainingValidationCorrelationTableParameterName = "Training and validation fitness correlation table";
|
---|
| 27 | private const string LowerCorrelationThresholdParameterName = "LowerCorrelationThreshold";
|
---|
| 28 | private const string UpperCorrelationThresholdParameterName = "UpperCorrelationThreshold";
|
---|
| 29 | private const string OverfittingParameterName = "IsOverfitting";
|
---|
| 30 |
|
---|
| 31 | #region parameter properties
|
---|
| 32 | public ILookupParameter<DoubleValue> TrainingValidationQualityCorrelationParameter {
|
---|
| 33 | get { return (ILookupParameter<DoubleValue>)Parameters[TrainingValidationCorrelationParameterName]; }
|
---|
| 34 | }
|
---|
| 35 | public ILookupParameter<DataTable> TrainingValidationQualityCorrelationTableParameter {
|
---|
| 36 | get { return (ILookupParameter<DataTable>)Parameters[TrainingValidationCorrelationTableParameterName]; }
|
---|
| 37 | }
|
---|
| 38 | public IValueLookupParameter<DoubleValue> LowerCorrelationThresholdParameter {
|
---|
| 39 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerCorrelationThresholdParameterName]; }
|
---|
| 40 | }
|
---|
| 41 | public IValueLookupParameter<DoubleValue> UpperCorrelationThresholdParameter {
|
---|
| 42 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperCorrelationThresholdParameterName]; }
|
---|
| 43 | }
|
---|
| 44 | public ILookupParameter<BoolValue> OverfittingParameter {
|
---|
| 45 | get { return (ILookupParameter<BoolValue>)Parameters[OverfittingParameterName]; }
|
---|
| 46 | }
|
---|
| 47 | #endregion
|
---|
| 48 |
|
---|
| 49 | [StorableConstructor]
|
---|
| 50 | protected SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
| 51 | protected SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer(SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer<T, U> original, Cloner cloner) : base(original, cloner) { }
|
---|
| 52 | public SymbolicDataAnalysisSingleObjectiveOverfittingAnalyzer()
|
---|
| 53 | : base()
|
---|
| 54 | {
|
---|
| 55 | Parameters.Add(new LookupParameter<DoubleValue>(TrainingValidationCorrelationParameterName, "Correlation of training and validation fitnesses"));
|
---|
| 56 | Parameters.Add(new LookupParameter<DataTable>(TrainingValidationCorrelationTableParameterName, "Data table of training and validation fitness correlation values over the whole run."));
|
---|
| 57 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerCorrelationThresholdParameterName, "Lower threshold for correlation value that marks the boundary from non-overfitting to overfitting.", new DoubleValue(0.65)));
|
---|
| 58 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperCorrelationThresholdParameterName, "Upper threshold for correlation value that marks the boundary from overfitting to non-overfitting.", new DoubleValue(0.75)));
|
---|
| 59 | Parameters.Add(new LookupParameter<BoolValue>(OverfittingParameterName, "Boolean indicator for overfitting."));
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | public override IOperation Apply()
|
---|
| 63 | {
|
---|
| 64 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
| 65 | if (!rows.Any()) return base.Apply();
|
---|
| 66 |
|
---|
| 67 | double[] trainingQuality = QualityParameter.ActualValue.Select(x => x.Value).ToArray();
|
---|
| 68 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 69 | var evaluator = EvaluatorParameter.ActualValue;
|
---|
| 70 |
|
---|
| 71 | // evaluate on validation partition
|
---|
| 72 | IExecutionContext childContext = (IExecutionContext)ExecutionContext.CreateChildOperation(evaluator);
|
---|
| 73 | double[] validationQuality = SymbolicExpressionTree
|
---|
| 74 | .Select(t => evaluator.Evaluate(childContext, t, problemData, rows))
|
---|
| 75 | .ToArray();
|
---|
| 76 |
|
---|
| 77 | double r = 0.0;
|
---|
| 78 | try
|
---|
| 79 | {
|
---|
| 80 | r = alglib.spearmancorr2(trainingQuality, validationQuality);
|
---|
| 81 | }
|
---|
| 82 | catch (alglib.alglibexception)
|
---|
| 83 | {
|
---|
| 84 | r = 0.0;
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | var results = ResultCollection;
|
---|
| 88 | #region Add Parameters
|
---|
| 89 | if (!results.ContainsKey(TrainingValidationQualityCorrelationTableParameter.Name))
|
---|
| 90 | ResultCollectionParameter.ActualValue.Add(new Result(TrainingValidationQualityCorrelationTableParameter.Name, TrainingValidationQualityCorrelationTableParameter.Description, typeof(DataTable)));
|
---|
| 91 | if (!results.ContainsKey(OverfittingParameter.Name))
|
---|
| 92 | results.Add(new Result(OverfittingParameter.Name, OverfittingParameter.Description, typeof(BoolValue)));
|
---|
| 93 | #endregion
|
---|
| 94 |
|
---|
| 95 | TrainingValidationQualityCorrelationParameter.ActualValue = new DoubleValue(r);
|
---|
| 96 |
|
---|
| 97 | if (TrainingValidationQualityCorrelationTableParameter.ActualValue == null)
|
---|
| 98 | {
|
---|
| 99 | var dataTable = new DataTable(TrainingValidationQualityCorrelationTableParameter.Name, TrainingValidationQualityCorrelationTableParameter.Description);
|
---|
| 100 | dataTable.Rows.Add(new DataRow(TrainingValidationQualityCorrelationParameter.Name, TrainingValidationQualityCorrelationParameter.Description));
|
---|
| 101 | dataTable.Rows[TrainingValidationQualityCorrelationParameter.Name].VisualProperties.StartIndexZero = true;
|
---|
| 102 | TrainingValidationQualityCorrelationTableParameter.ActualValue = dataTable;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | TrainingValidationQualityCorrelationTableParameter.ActualValue.Rows[TrainingValidationQualityCorrelationParameter.Name].Values.Add(r);
|
---|
| 106 |
|
---|
| 107 | if (OverfittingParameter.ActualValue != null && OverfittingParameter.ActualValue.Value)
|
---|
| 108 | {
|
---|
| 109 | // overfitting == true
|
---|
| 110 | // => r must reach the upper threshold to switch back to non-overfitting state
|
---|
| 111 | OverfittingParameter.ActualValue = new BoolValue(r < UpperCorrelationThresholdParameter.ActualValue.Value);
|
---|
| 112 | }
|
---|
| 113 | else
|
---|
| 114 | {
|
---|
| 115 | // overfitting == false
|
---|
| 116 | // => r must drop below lower threshold to switch to overfitting state
|
---|
| 117 | OverfittingParameter.ActualValue = new BoolValue(r < LowerCorrelationThresholdParameter.ActualValue.Value);
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | results[TrainingValidationQualityCorrelationTableParameter.Name].Value = TrainingValidationQualityCorrelationTableParameter.ActualValue;
|
---|
| 121 | results[OverfittingParameter.Name].Value = OverfittingParameter.ActualValue;
|
---|
| 122 |
|
---|
| 123 | return base.Apply();
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 | }
|
---|