1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using System.Text;
|
---|
5 | using System.Threading.Tasks;
|
---|
6 |
|
---|
7 | #region License Information
|
---|
8 | /* HeuristicLab
|
---|
9 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
10 | *
|
---|
11 | * This file is part of HeuristicLab.
|
---|
12 | *
|
---|
13 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
14 | * it under the terms of the GNU General Public License as published by
|
---|
15 | * the Free Software Foundation, either version 3 of the License, or
|
---|
16 | * (at your option) any later version.
|
---|
17 | *
|
---|
18 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
21 | * GNU General Public License for more details.
|
---|
22 | *
|
---|
23 | * You should have received a copy of the GNU General Public License
|
---|
24 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
25 | */
|
---|
26 | #endregion
|
---|
27 |
|
---|
28 | using HEAL.Attic;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
30 | using HeuristicLab.Core;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
32 | using HeuristicLab.Parameters;
|
---|
33 | using HeuristicLab.Common;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
35 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
36 | using HeuristicLab.Random;
|
---|
37 | using HeuristicLab.Data;
|
---|
38 | using HeuristicLab.Optimization;
|
---|
39 |
|
---|
40 | namespace HeuristicLab.Algorithms.OESRALPS.Analyzers.Regression
|
---|
41 | {
|
---|
42 | /// <summary>
|
---|
43 | /// An operator that analyzes the validation best symbolic regression solution for single objective symbolic regression problems.
|
---|
44 | /// </summary>
|
---|
45 | [Item("SymbolicRegressionSingleObjectiveValidationBestSolutionSlidingWindowAnalyzer", "An operator that analyzes the validation best symbolic regression solution for single objective symbolic regression problems.")]
|
---|
46 | [StorableType("75E2AFFF-95B2-4FA4-8544-CF202A665890")]
|
---|
47 | public class SymbolicRegressionSingleObjectiveValidationBestSolutionSlidingWindowAnalyzer
|
---|
48 | : SymbolicDataAnalysisSingleObjectiveLayerValidationAnalyzer<ISymbolicRegressionSingleObjectiveEvaluator, IRegressionProblemData>,
|
---|
49 | ISymbolicDataAnalysisBoundedOperator
|
---|
50 | {
|
---|
51 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
52 | private const string ValidationBestSolutionParameterName = "Best validation solution";
|
---|
53 | private const string ValidationBestSolutionQualityParameterName = "Best validation solution quality";
|
---|
54 | private const string ValidationBestSolutionGenerationParameterName = "Best validation solution generation";
|
---|
55 | private const string UpdateAlwaysParameterName = "Always update best solution";
|
---|
56 | private const string IterationsParameterName = "Generations";
|
---|
57 | private const string MaximumIterationsParameterName = "Maximum Iterations";
|
---|
58 |
|
---|
59 | #region parameter properties
|
---|
60 | public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
61 | get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
62 | }
|
---|
63 | public ILookupParameter<ISymbolicRegressionSolution> ValidationBestSolutionParameter {
|
---|
64 | get { return (ILookupParameter<ISymbolicRegressionSolution>)Parameters[ValidationBestSolutionParameterName]; }
|
---|
65 | }
|
---|
66 | public ILookupParameter<DoubleValue> ValidationBestSolutionQualityParameter {
|
---|
67 | get { return (ILookupParameter<DoubleValue>)Parameters[ValidationBestSolutionQualityParameterName]; }
|
---|
68 | }
|
---|
69 | public ILookupParameter<IntValue> ValidationBestSolutionGenerationParameter {
|
---|
70 | get { return (ILookupParameter<IntValue>)Parameters[ValidationBestSolutionGenerationParameterName]; }
|
---|
71 | }
|
---|
72 | public IFixedValueParameter<BoolValue> UpdateAlwaysParameter {
|
---|
73 | get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateAlwaysParameterName]; }
|
---|
74 | }
|
---|
75 | public ILookupParameter<IntValue> IterationsParameter {
|
---|
76 | get { return (ILookupParameter<IntValue>)Parameters[IterationsParameterName]; }
|
---|
77 | }
|
---|
78 | public IValueLookupParameter<IntValue> MaximumIterationsParameter {
|
---|
79 | get { return (IValueLookupParameter<IntValue>)Parameters[MaximumIterationsParameterName]; }
|
---|
80 | }
|
---|
81 | #endregion
|
---|
82 |
|
---|
83 | #region properties
|
---|
84 | public ISymbolicRegressionSolution ValidationBestSolution {
|
---|
85 | get { return ValidationBestSolutionParameter.ActualValue; }
|
---|
86 | set { ValidationBestSolutionParameter.ActualValue = value; }
|
---|
87 | }
|
---|
88 | public DoubleValue ValidationBestSolutionQuality {
|
---|
89 | get { return ValidationBestSolutionQualityParameter.ActualValue; }
|
---|
90 | set { ValidationBestSolutionQualityParameter.ActualValue = value; }
|
---|
91 | }
|
---|
92 | public BoolValue UpdateAlways {
|
---|
93 | get { return UpdateAlwaysParameter.Value; }
|
---|
94 | }
|
---|
95 | #endregion
|
---|
96 |
|
---|
97 | [StorableConstructor]
|
---|
98 | private SymbolicRegressionSingleObjectiveValidationBestSolutionSlidingWindowAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
99 | private SymbolicRegressionSingleObjectiveValidationBestSolutionSlidingWindowAnalyzer(SymbolicRegressionSingleObjectiveValidationBestSolutionSlidingWindowAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
100 | public SymbolicRegressionSingleObjectiveValidationBestSolutionSlidingWindowAnalyzer()
|
---|
101 | : base()
|
---|
102 | {
|
---|
103 | Parameters.Add(new LookupParameter<ISymbolicRegressionSolution>(ValidationBestSolutionParameterName, "The validation best symbolic data analyis solution."));
|
---|
104 | Parameters.Add(new LookupParameter<DoubleValue>(ValidationBestSolutionQualityParameterName, "The quality of the validation best symbolic data analysis solution."));
|
---|
105 | Parameters.Add(new LookupParameter<IntValue>(ValidationBestSolutionGenerationParameterName, "The generation in which the best validation solution was found."));
|
---|
106 | Parameters.Add(new FixedValueParameter<BoolValue>(UpdateAlwaysParameterName, "Determines if the best validation solution should always be updated regardless of its quality.", new BoolValue(true)));
|
---|
107 | Parameters.Add(new LookupParameter<IntValue>(IterationsParameterName, "The number of performed iterations."));
|
---|
108 | Parameters.Add(new ValueLookupParameter<IntValue>(MaximumIterationsParameterName, "The maximum number of performed iterations.") { Hidden = true });
|
---|
109 | UpdateAlwaysParameter.Hidden = true;
|
---|
110 | Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic regression model."));
|
---|
111 | }
|
---|
112 |
|
---|
113 | public override IDeepCloneable Clone(Cloner cloner)
|
---|
114 | {
|
---|
115 | return new SymbolicRegressionSingleObjectiveValidationBestSolutionSlidingWindowAnalyzer(this, cloner);
|
---|
116 | }
|
---|
117 |
|
---|
118 | protected ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality)
|
---|
119 | {
|
---|
120 | var model = new SymbolicRegressionModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
|
---|
121 | if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue);
|
---|
122 | return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone());
|
---|
123 | }
|
---|
124 |
|
---|
125 | protected override IEnumerable<int> GenerateRowsToEvaluate()
|
---|
126 | {
|
---|
127 | if (ValidationPartitionParameter.ActualValue == null
|
---|
128 | || TestPartitionParameter.ActualValue == null)
|
---|
129 | return base.GenerateRowsToEvaluate();
|
---|
130 |
|
---|
131 | int seed = RandomParameter.ActualValue.Next();
|
---|
132 | int samplesStart = ValidationPartitionParameter.ActualValue.Start;
|
---|
133 | int samplesEnd = ValidationPartitionParameter.ActualValue.End;
|
---|
134 | int testPartitionStart = TestPartitionParameter.ActualValue.Start;
|
---|
135 | int testPartitionEnd = TestPartitionParameter.ActualValue.End;
|
---|
136 |
|
---|
137 | if (samplesEnd < samplesStart) throw new ArgumentException("Start value is larger than end value.");
|
---|
138 | int count = (int)((samplesEnd - samplesStart) * RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value);
|
---|
139 | if (count == 0) count = 1;
|
---|
140 | return RandomEnumerable.SampleRandomNumbers(seed, samplesStart, samplesEnd, count)
|
---|
141 | .Where(i => i < testPartitionStart && i < ProblemDataParameter.ActualValue.Dataset.Rows);
|
---|
142 | }
|
---|
143 |
|
---|
144 | public override IOperation Apply()
|
---|
145 | {
|
---|
146 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
147 | if (!rows.Any()) return base.Apply();
|
---|
148 |
|
---|
149 | #region find best tree
|
---|
150 | var evaluator = EvaluatorParameter.ActualValue;
|
---|
151 | var problemData = ProblemDataParameter.ActualValue;
|
---|
152 | double bestValidationQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
|
---|
153 | ISymbolicExpressionTree bestTree = null;
|
---|
154 | ISymbolicExpressionTree[] tree = SymbolicExpressionTree.ToArray();
|
---|
155 |
|
---|
156 | // sort is ascending and we take the first n% => order so that best solutions are smallest
|
---|
157 | // sort order is determined by maximization parameter
|
---|
158 | double[] trainingQuality;
|
---|
159 | if (Maximization.Value)
|
---|
160 | {
|
---|
161 | // largest values must be sorted first
|
---|
162 | trainingQuality = Quality.Select(x => -x.Value).ToArray();
|
---|
163 | }
|
---|
164 | else
|
---|
165 | {
|
---|
166 | // smallest values must be sorted first
|
---|
167 | trainingQuality = Quality.Select(x => x.Value).ToArray();
|
---|
168 | }
|
---|
169 |
|
---|
170 | // sort trees by training qualities
|
---|
171 | Array.Sort(trainingQuality, tree);
|
---|
172 |
|
---|
173 | // number of best training solutions to validate (at least 1)
|
---|
174 | int topN = (int)Math.Max(tree.Length * PercentageOfBestSolutionsParameter.ActualValue.Value, 1);
|
---|
175 |
|
---|
176 | IExecutionContext childContext = (IExecutionContext)ExecutionContext.CreateChildOperation(evaluator);
|
---|
177 | // evaluate best n training trees on validiation set
|
---|
178 | var quality = tree
|
---|
179 | .Take(topN)
|
---|
180 | .Select(t => evaluator.Evaluate(childContext, t, problemData, rows))
|
---|
181 | .ToArray();
|
---|
182 |
|
---|
183 | for (int i = 0; i < quality.Length; i++)
|
---|
184 | {
|
---|
185 | if (IsBetter(quality[i], bestValidationQuality, Maximization.Value))
|
---|
186 | {
|
---|
187 | bestValidationQuality = quality[i];
|
---|
188 | bestTree = tree[i];
|
---|
189 | }
|
---|
190 | }
|
---|
191 | #endregion
|
---|
192 |
|
---|
193 | var results = ResultCollection;
|
---|
194 | if (bestTree != null && (UpdateAlways.Value || ValidationBestSolutionQuality == null ||
|
---|
195 | IsBetter(bestValidationQuality, ValidationBestSolutionQuality.Value, Maximization.Value)))
|
---|
196 | {
|
---|
197 | ValidationBestSolution = CreateSolution(bestTree, bestValidationQuality);
|
---|
198 | ValidationBestSolutionQuality = new DoubleValue(bestValidationQuality);
|
---|
199 | if (IterationsParameter.ActualValue != null)
|
---|
200 | ValidationBestSolutionGenerationParameter.ActualValue = new IntValue(IterationsParameter.ActualValue.Value);
|
---|
201 |
|
---|
202 | if (!results.ContainsKey(ValidationBestSolutionParameter.Name))
|
---|
203 | {
|
---|
204 | results.Add(new Result(ValidationBestSolutionParameter.Name, ValidationBestSolutionParameter.Description, ValidationBestSolution));
|
---|
205 | results.Add(new Result(ValidationBestSolutionQualityParameter.Name, ValidationBestSolutionQualityParameter.Description, ValidationBestSolutionQuality));
|
---|
206 | if (ValidationBestSolutionGenerationParameter.ActualValue != null)
|
---|
207 | results.Add(new Result(ValidationBestSolutionGenerationParameter.Name, ValidationBestSolutionGenerationParameter.Description, ValidationBestSolutionGenerationParameter.ActualValue));
|
---|
208 | }
|
---|
209 | else
|
---|
210 | {
|
---|
211 | results[ValidationBestSolutionParameter.Name].Value = ValidationBestSolution;
|
---|
212 | results[ValidationBestSolutionQualityParameter.Name].Value = ValidationBestSolutionQuality;
|
---|
213 | if (ValidationBestSolutionGenerationParameter.ActualValue != null)
|
---|
214 | results[ValidationBestSolutionGenerationParameter.Name].Value = ValidationBestSolutionGenerationParameter.ActualValue;
|
---|
215 | }
|
---|
216 | }
|
---|
217 | return base.Apply();
|
---|
218 | }
|
---|
219 | private bool IsBetter(double lhs, double rhs, bool maximization)
|
---|
220 | {
|
---|
221 | if (maximization) return lhs > rhs;
|
---|
222 | else return lhs < rhs;
|
---|
223 | }
|
---|
224 | }
|
---|
225 | }
|
---|
226 |
|
---|