1 | using HEAL.Attic;
|
---|
2 | using HeuristicLab.Algorithms.OESRALPS.DriftDetection;
|
---|
3 | using HeuristicLab.Analysis;
|
---|
4 | using HeuristicLab.Common;
|
---|
5 | using HeuristicLab.Core;
|
---|
6 | using HeuristicLab.Data;
|
---|
7 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
8 | using HeuristicLab.Operators;
|
---|
9 | using HeuristicLab.Optimization;
|
---|
10 | using HeuristicLab.Parameters;
|
---|
11 | using HeuristicLab.Problems.DataAnalysis;
|
---|
12 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
13 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
14 | using System;
|
---|
15 | using System.Collections.Generic;
|
---|
16 | using System.Linq;
|
---|
17 | using System.Text;
|
---|
18 | using System.Threading.Tasks;
|
---|
19 |
|
---|
20 | namespace HeuristicLab.Algorithms.OESRALPS.Analyzers.Regression
|
---|
21 | {
|
---|
22 | [Item("SymbolicRegressionGenerationalAdaptiveSlidingWindowAnalyzer", "Symbolic Regression Analyzer which moves a sliding window every n-th generation over the training partition and adapts the window size, when a change is detected.")]
|
---|
23 | [StorableType("936D341B-0AC1-49A8-B4D9-DCE13BDB7114")]
|
---|
24 | public sealed class SymbolicRegressionAdaptiveSlidingWindowAnalyzer : SlidingWindowAnalyzer<ISymbolicRegressionSingleObjectiveEvaluator, IRegressionProblemData>
|
---|
25 | {
|
---|
26 | private const string LayerResultsParameterName = "LayerResults";
|
---|
27 |
|
---|
28 | private const string DriftDetectedParameterName = "Drift Detected";
|
---|
29 | private const string AdwinWindowSizeParameterName = "ADWIN Window Size";
|
---|
30 |
|
---|
31 | private const string SlidingWindowSizeChart = "Adaptive Sliding Window Size";
|
---|
32 |
|
---|
33 | private const string DeltaParameterName = "Delta";
|
---|
34 |
|
---|
35 | [Storable]
|
---|
36 | private ADWINWrapper adwin;
|
---|
37 |
|
---|
38 | #region parameter properties
|
---|
39 | public IScopeTreeLookupParameter<ResultCollection> LayerResultsParameterParameter {
|
---|
40 | get { return (IScopeTreeLookupParameter<ResultCollection>)Parameters[LayerResultsParameterName]; }
|
---|
41 | }
|
---|
42 | public IFixedValueParameter<DoubleValue> DeltaParameter {
|
---|
43 | get { return (IFixedValueParameter<DoubleValue>)Parameters[DeltaParameterName]; }
|
---|
44 | }
|
---|
45 | #endregion
|
---|
46 |
|
---|
47 | [StorableConstructor]
|
---|
48 | private SymbolicRegressionAdaptiveSlidingWindowAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
49 | private SymbolicRegressionAdaptiveSlidingWindowAnalyzer(SymbolicRegressionAdaptiveSlidingWindowAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
50 | public SymbolicRegressionAdaptiveSlidingWindowAnalyzer()
|
---|
51 | : base()
|
---|
52 | {
|
---|
53 | Parameters.Add(new ScopeTreeLookupParameter<ResultCollection>(LayerResultsParameterName, "Results of all Layers.") { Depth = 1 });
|
---|
54 | Parameters.Add(new FixedValueParameter<DoubleValue>(DeltaParameterName, "The confidence value for hypothesis test.", new DoubleValue(0.1)));
|
---|
55 |
|
---|
56 | SlidingWindowSize.Value = 100;
|
---|
57 | SlidingWindowStepWidth.Value = (int)(SlidingWindowSize.Value * 0.1);
|
---|
58 |
|
---|
59 | SlidingWindowSizeParameter.Hidden = true;
|
---|
60 | SlidingWindowStepWidthParameter.Hidden = true;
|
---|
61 |
|
---|
62 | adwin = new ADWINWrapper(DeltaParameter.Value.Value, 200, 20, 20);
|
---|
63 | }
|
---|
64 | public override IDeepCloneable Clone(Cloner cloner)
|
---|
65 | {
|
---|
66 | return new SymbolicRegressionAdaptiveSlidingWindowAnalyzer(this, cloner);
|
---|
67 | }
|
---|
68 |
|
---|
69 | public override IOperation Apply()
|
---|
70 | {
|
---|
71 | #region DataTable Parameters
|
---|
72 | var results = ResultCollection;
|
---|
73 | if (!results.ContainsKey(SlidingWindowSizeChart))
|
---|
74 | results.Add(new Result(SlidingWindowSizeChart, new DataTable(SlidingWindowSizeChart)));
|
---|
75 |
|
---|
76 | var slidingWindowSizeChart = (DataTable)results[SlidingWindowSizeChart].Value;
|
---|
77 |
|
---|
78 | if (!slidingWindowSizeChart.Rows.ContainsKey(AdwinWindowSizeParameterName))
|
---|
79 | slidingWindowSizeChart.Rows.Add(new DataRow(AdwinWindowSizeParameterName));
|
---|
80 | if (!slidingWindowSizeChart.Rows.ContainsKey(DriftDetectedParameterName))
|
---|
81 | slidingWindowSizeChart.Rows.Add(new DataRow(DriftDetectedParameterName) { VisualProperties = { SecondYAxis = true } });
|
---|
82 | #endregion
|
---|
83 |
|
---|
84 | if (TrainingPartitionParameter.ActualValue == null
|
---|
85 | || ValidationPartitionParameter == null) {
|
---|
86 | adwin = new ADWINWrapper(DeltaParameter.Value.Value, 200, 20, 20);
|
---|
87 | SlidingWindowSize.Value = 100;
|
---|
88 | SlidingWindowStepWidth.Value = (int)(SlidingWindowSize.Value * 0.1);
|
---|
89 | TerminateSlidingWindowParameter.ActualValue.Value = false;
|
---|
90 | InitializeSlidingWindow(StartSlidingWindow.Value, SlidingWindowSize.Value);
|
---|
91 | return base.Apply();
|
---|
92 | }
|
---|
93 | if (!IsMinimumIterationIntervalPassed())
|
---|
94 | return base.Apply();
|
---|
95 |
|
---|
96 | #region set up evaluation
|
---|
97 | var growingTerm = 1 + (int)(SlidingWindowSize.Value * 0.10); //1 + (int)(SlidingWindowStepWidth.Value * 0.5);
|
---|
98 | if (ValidationPartitionParameter.ActualValue.End >= ProblemData.TestPartition.Start)
|
---|
99 | {
|
---|
100 | TerminateSlidingWindowParameter.ActualValue.Value = true;
|
---|
101 | return base.Apply();
|
---|
102 | }
|
---|
103 | else if (ValidationPartitionParameter.ActualValue.End > ProblemData.TestPartition.Start - growingTerm)
|
---|
104 | {
|
---|
105 | growingTerm = ProblemData.TestPartition.Start - ValidationPartitionParameter.ActualValue.End;
|
---|
106 | }
|
---|
107 |
|
---|
108 | IntRange rangeToEvaluate;
|
---|
109 | if (adwin.NumElementsProcessed == 0)
|
---|
110 | rangeToEvaluate = new IntRange(adwin.Count,
|
---|
111 | ValidationPartitionParameter.ActualValue.End + growingTerm + 1);
|
---|
112 | else
|
---|
113 | rangeToEvaluate =
|
---|
114 | new IntRange(adwin.Count,
|
---|
115 | ValidationPartitionParameter.ActualValue.End + growingTerm);
|
---|
116 |
|
---|
117 | var rows = Enumerable.Range(rangeToEvaluate.Start, rangeToEvaluate.Size);
|
---|
118 | #endregion
|
---|
119 |
|
---|
120 | var changeDetected = false;
|
---|
121 | var targetValues = ProblemDataParameter.ActualValue.Dataset.GetDoubleValues(ProblemDataParameter.ActualValue.TargetVariable, rows);
|
---|
122 |
|
---|
123 | IList<double> changeBuffer = new List<double>();
|
---|
124 | IList<double> windowSizeBuffer = new List<double>();
|
---|
125 |
|
---|
126 | var targetValuesEnumerator = targetValues.GetEnumerator();
|
---|
127 | while (!changeDetected && targetValuesEnumerator.MoveNext())
|
---|
128 | {
|
---|
129 | changeDetected |= adwin.AddElement(targetValuesEnumerator.Current);
|
---|
130 | //changeBuffer.Add(changeDetected ? 1 : 0);
|
---|
131 | //windowSizeBuffer.Add(adwin.WindowSize);
|
---|
132 | }
|
---|
133 |
|
---|
134 | InitializeSlidingWindow(
|
---|
135 | adwin.Count - adwin.WindowSize,
|
---|
136 | adwin.WindowSize);
|
---|
137 |
|
---|
138 | SlidingWindowSize.Value = adwin.WindowSize;
|
---|
139 | SlidingWindowStepWidth.Value = (int)(SlidingWindowSize.Value * 0.1);
|
---|
140 |
|
---|
141 | //slidingWindowSizeChart.Rows[DriftDetectedParameterName].Values.AddRange(changeBuffer);
|
---|
142 | //slidingWindowSizeChart.Rows[AdwinWindowSizeParameterName].Values.AddRange(windowSizeBuffer);
|
---|
143 | results[SlidingWindowSizeChart].Value = slidingWindowSizeChart;
|
---|
144 |
|
---|
145 | return base.Apply();
|
---|
146 | }
|
---|
147 | }
|
---|
148 | }
|
---|