[17438] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using System;
|
---|
| 25 | using System.Collections.Generic;
|
---|
| 26 | using System.Linq;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Algorithms.DynamicALPS
|
---|
| 29 | {
|
---|
| 30 | public static class DynamicALPSUtil
|
---|
| 31 | {
|
---|
| 32 | public static void QuickSort(double[] array, int[] idx, int from, int to)
|
---|
| 33 | {
|
---|
| 34 | if (from < to)
|
---|
| 35 | {
|
---|
| 36 | double temp = array[to];
|
---|
| 37 | int tempIdx = idx[to];
|
---|
| 38 | int i = from - 1;
|
---|
| 39 | for (int j = from; j < to; j++)
|
---|
| 40 | {
|
---|
| 41 | if (array[j] <= temp)
|
---|
| 42 | {
|
---|
| 43 | i++;
|
---|
| 44 | double tempValue = array[j];
|
---|
| 45 | array[j] = array[i];
|
---|
| 46 | array[i] = tempValue;
|
---|
| 47 | int tempIndex = idx[j];
|
---|
| 48 | idx[j] = idx[i];
|
---|
| 49 | idx[i] = tempIndex;
|
---|
| 50 | }
|
---|
| 51 | }
|
---|
| 52 | array[to] = array[i + 1];
|
---|
| 53 | array[i + 1] = temp;
|
---|
| 54 | idx[to] = idx[i + 1];
|
---|
| 55 | idx[i + 1] = tempIdx;
|
---|
| 56 | QuickSort(array, idx, from, i);
|
---|
| 57 | QuickSort(array, idx, i + 1, to);
|
---|
| 58 | }
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | public static void MinFastSort(double[] x, int[] idx, int n, int m)
|
---|
| 62 | {
|
---|
| 63 | for (int i = 0; i < m; i++)
|
---|
| 64 | {
|
---|
| 65 | for (int j = i + 1; j < n; j++)
|
---|
| 66 | {
|
---|
| 67 | if (x[i] > x[j])
|
---|
| 68 | {
|
---|
| 69 | double temp = x[i];
|
---|
| 70 | x[i] = x[j];
|
---|
| 71 | x[j] = temp;
|
---|
| 72 | int id = idx[i];
|
---|
| 73 | idx[i] = idx[j];
|
---|
| 74 | idx[j] = id;
|
---|
| 75 | }
|
---|
| 76 | }
|
---|
| 77 | }
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | public static IList<IDynamicALPSSolution> GetSubsetOfEvenlyDistributedSolutions(IRandom random, IList<IDynamicALPSSolution> solutionList, int newSolutionListSize)
|
---|
| 81 | {
|
---|
| 82 | if (solutionList == null || solutionList.Count == 0)
|
---|
| 83 | {
|
---|
| 84 | throw new ArgumentException("Solution list is null or empty.");
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | return solutionList[0].Dimensions == 2
|
---|
| 88 | ? TwoObjectivesCase(solutionList, newSolutionListSize)
|
---|
| 89 | : MoreThanTwoObjectivesCase(random, solutionList, newSolutionListSize);
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | private static IList<IDynamicALPSSolution> TwoObjectivesCase(IList<IDynamicALPSSolution> solutionList, int newSolutionListSize)
|
---|
| 93 | {
|
---|
| 94 | var resultSolutionList = new IDynamicALPSSolution[newSolutionListSize];
|
---|
| 95 |
|
---|
| 96 | // compute weight vectors
|
---|
| 97 | double[][] lambda_moead = new double[newSolutionListSize][];
|
---|
| 98 | var values = SequenceGenerator.GenerateSteps(0m, 1m, 1m / newSolutionListSize).ToArray();
|
---|
| 99 | for (int i = 0; i < newSolutionListSize; ++i)
|
---|
| 100 | {
|
---|
| 101 | var weights = new double[newSolutionListSize];
|
---|
| 102 | weights[0] = (double)values[i];
|
---|
| 103 | weights[1] = 1 - weights[0];
|
---|
| 104 |
|
---|
| 105 | lambda_moead[i] = weights;
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | var idealPoint = new double[2];
|
---|
| 109 | foreach (var solution in solutionList)
|
---|
| 110 | {
|
---|
| 111 | // update ideal point
|
---|
| 112 | idealPoint.UpdateIdeal(solution.Qualities);
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | // Select the best solution for each weight vector
|
---|
| 116 | for (int i = 0; i < newSolutionListSize; i++)
|
---|
| 117 | {
|
---|
| 118 | var currentBest = solutionList[0];
|
---|
| 119 | double value = ScalarizingFitnessFunction(currentBest, lambda_moead[i], idealPoint);
|
---|
| 120 | for (int j = 1; j < solutionList.Count; j++)
|
---|
| 121 | {
|
---|
| 122 | double aux = ScalarizingFitnessFunction(solutionList[j], lambda_moead[i], idealPoint); // we are looking for the best for the weight i
|
---|
| 123 | if (aux < value)
|
---|
| 124 | { // solution in position j is better!
|
---|
| 125 | value = aux;
|
---|
| 126 | currentBest = solutionList[j];
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 | resultSolutionList[i] = (DynamicALPSSolution)currentBest.Clone();
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | return resultSolutionList;
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | private static IList<IDynamicALPSSolution> MoreThanTwoObjectivesCase(IRandom random, IList<IDynamicALPSSolution> solutionList, int newSolutionListSize)
|
---|
| 136 | {
|
---|
| 137 | var resultSolutionList = new List<IDynamicALPSSolution>();
|
---|
| 138 |
|
---|
| 139 | int randomIndex = random.Next(0, solutionList.Count);
|
---|
| 140 |
|
---|
| 141 | var candidate = new List<IDynamicALPSSolution>();
|
---|
| 142 | resultSolutionList.Add(solutionList[randomIndex]);
|
---|
| 143 |
|
---|
| 144 | for (int i = 0; i < solutionList.Count; ++i)
|
---|
| 145 | {
|
---|
| 146 | if (i != randomIndex)
|
---|
| 147 | {
|
---|
| 148 | candidate.Add(solutionList[i]);
|
---|
| 149 | }
|
---|
| 150 | }
|
---|
| 151 |
|
---|
| 152 | while (resultSolutionList.Count < newSolutionListSize)
|
---|
| 153 | {
|
---|
| 154 | int index = 0;
|
---|
| 155 | var selected = candidate[0]; // it should be a next! (n <= population size!)
|
---|
| 156 | double aux = CalculateBestDistance(selected, solutionList);
|
---|
| 157 | int i = 1;
|
---|
| 158 | while (i < candidate.Count)
|
---|
| 159 | {
|
---|
| 160 | var nextCandidate = candidate[i];
|
---|
| 161 | double distanceValue = CalculateBestDistance(nextCandidate, solutionList);
|
---|
| 162 | if (aux < distanceValue)
|
---|
| 163 | {
|
---|
| 164 | index = i;
|
---|
| 165 | aux = distanceValue;
|
---|
| 166 | }
|
---|
| 167 | i++;
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | // add the selected to res and remove from candidate list
|
---|
| 171 | var removedSolution = candidate[index];
|
---|
| 172 | candidate.RemoveAt(index);
|
---|
| 173 | resultSolutionList.Add((DynamicALPSSolution)removedSolution.Clone());
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | return resultSolutionList;
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | private static double ScalarizingFitnessFunction(IDynamicALPSSolution currentBest, double[] lambda_moead, double[] idealPoint)
|
---|
| 180 | {
|
---|
| 181 | double maxFun = -1.0e+30;
|
---|
| 182 |
|
---|
| 183 | for (int n = 0; n < idealPoint.Length; n++)
|
---|
| 184 | {
|
---|
| 185 | double diff = Math.Abs(currentBest.Qualities[n] - idealPoint[n]);
|
---|
| 186 |
|
---|
| 187 | double functionValue;
|
---|
| 188 | if (lambda_moead[n] == 0)
|
---|
| 189 | {
|
---|
| 190 | functionValue = 0.0001 * diff;
|
---|
| 191 | }
|
---|
| 192 | else
|
---|
| 193 | {
|
---|
| 194 | functionValue = diff * lambda_moead[n];
|
---|
| 195 | }
|
---|
| 196 | if (functionValue > maxFun)
|
---|
| 197 | {
|
---|
| 198 | maxFun = functionValue;
|
---|
| 199 | }
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | return maxFun;
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 | public static void UpdateIdeal(this double[] idealPoint, double[] point)
|
---|
| 206 | {
|
---|
| 207 | for (int i = 0; i < point.Length; ++i)
|
---|
| 208 | {
|
---|
| 209 | if (double.IsInfinity(point[i]) || double.IsNaN(point[i]))
|
---|
| 210 | {
|
---|
| 211 | continue;
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | if (idealPoint[i] > point[i])
|
---|
| 215 | {
|
---|
| 216 | idealPoint[i] = point[i];
|
---|
| 217 | }
|
---|
| 218 | }
|
---|
| 219 | }
|
---|
| 220 |
|
---|
| 221 | public static void UpdateNadir(this double[] nadirPoint, double[] point)
|
---|
| 222 | {
|
---|
| 223 | for (int i = 0; i < point.Length; ++i)
|
---|
| 224 | {
|
---|
| 225 | if (double.IsInfinity(point[i]) || double.IsNaN(point[i]))
|
---|
| 226 | {
|
---|
| 227 | continue;
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 | if (nadirPoint[i] < point[i])
|
---|
| 231 | {
|
---|
| 232 | nadirPoint[i] = point[i];
|
---|
| 233 | }
|
---|
| 234 | }
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | public static void UpdateIdeal(this double[] idealPoint, IList<IDynamicALPSSolution> solutions)
|
---|
| 238 | {
|
---|
| 239 | foreach (var s in solutions)
|
---|
| 240 | {
|
---|
| 241 | idealPoint.UpdateIdeal(s.Qualities);
|
---|
| 242 | }
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | public static void UpdateNadir(this double[] nadirPoint, IList<IDynamicALPSSolution> solutions)
|
---|
| 246 | {
|
---|
| 247 | foreach (var s in solutions)
|
---|
| 248 | {
|
---|
| 249 | nadirPoint.UpdateNadir(s.Qualities);
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 | private static double CalculateBestDistance(IDynamicALPSSolution solution, IList<IDynamicALPSSolution> solutionList)
|
---|
| 254 | {
|
---|
| 255 | var best = solutionList.Min(x => EuclideanDistance(solution.Qualities, x.Qualities));
|
---|
| 256 | if (double.IsNaN(best) || double.IsInfinity(best))
|
---|
| 257 | {
|
---|
| 258 | best = double.MaxValue;
|
---|
| 259 | }
|
---|
| 260 | return best;
|
---|
| 261 | }
|
---|
| 262 |
|
---|
| 263 | public static double EuclideanDistance(double[] a, double[] b)
|
---|
| 264 | {
|
---|
| 265 | if (a.Length != b.Length)
|
---|
| 266 | {
|
---|
| 267 | throw new ArgumentException("Euclidean distance: the arrays have different lengths.");
|
---|
| 268 | }
|
---|
| 269 |
|
---|
| 270 | var distance = 0d;
|
---|
| 271 | for (int i = 0; i < a.Length; ++i)
|
---|
| 272 | {
|
---|
| 273 | var d = a[i] - b[i];
|
---|
| 274 | distance += d * d;
|
---|
| 275 | }
|
---|
| 276 | return Math.Sqrt(distance);
|
---|
| 277 | }
|
---|
| 278 | }
|
---|
| 279 | }
|
---|