[17438] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | // 03/02/2020
|
---|
| 23 | // TODO LIST:
|
---|
| 24 | // 1. Dynamic reference point strategy
|
---|
| 25 | // 2. Normalized fitness value strategy, desibility function.
|
---|
| 26 | // 3. HVC calculation should be definitely improved, at least in the 2D case.
|
---|
| 27 | // 4. multiple point strategy when $\lambda>1$
|
---|
| 28 |
|
---|
| 29 | using HEAL.Attic;
|
---|
| 30 | using HeuristicLab.Analysis;
|
---|
| 31 | using HeuristicLab.Common;
|
---|
| 32 | using HeuristicLab.Core;
|
---|
| 33 | using HeuristicLab.Data;
|
---|
| 34 | using HeuristicLab.ExpressionGenerator;
|
---|
| 35 | using HeuristicLab.Optimization;
|
---|
| 36 | using HeuristicLab.Parameters;
|
---|
| 37 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 38 | using HeuristicLab.Problems.TestFunctions.MultiObjective;
|
---|
| 39 | using HeuristicLab.Random;
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Drawing;
|
---|
| 43 | using System.Linq;
|
---|
| 44 | using CancellationToken = System.Threading.CancellationToken;
|
---|
| 45 |
|
---|
| 46 | namespace HeuristicLab.Algorithms.DynamicALPS {
|
---|
| 47 | [Item("DynamicALPSAlgorithmBase", "Base class for all DynamicALPS algorithm variants.")]
|
---|
| 48 | [StorableType("C0141748-DF5A-4CA0-A3DD-1DFB98236F7E")]
|
---|
| 49 | public abstract class DynamicALPSAlgorithmBase : BasicAlgorithm {
|
---|
| 50 | #region data members
|
---|
| 51 |
|
---|
| 52 | [StorableType("75C9EA99-D699-4A1F-8AB2-AB86B7A2FD68")]
|
---|
| 53 | protected enum NeighborType { NEIGHBOR, POPULATION }
|
---|
| 54 |
|
---|
| 55 |
|
---|
| 56 | [StorableType("2A71E397-05CE-460F-B982-EE2F4B37C354")]
|
---|
| 57 | // TCHE = Chebyshev (Tchebyshev)
|
---|
| 58 | // PBI = Penalty-based boundary intersection
|
---|
| 59 | // AGG = Weighted sum
|
---|
| 60 | public enum FunctionType { TCHE, PBI, AGG }
|
---|
| 61 |
|
---|
| 62 | [Storable]
|
---|
| 63 | protected double[] IdealPoint { get; set; }
|
---|
| 64 | [Storable]
|
---|
| 65 | protected double[] NadirPoint { get; set; } // potentially useful for objective normalization
|
---|
| 66 |
|
---|
| 67 | [Storable]
|
---|
| 68 | protected double[][] lambda_moead;
|
---|
| 69 |
|
---|
| 70 | [Storable]
|
---|
| 71 | protected int[][] neighbourhood;
|
---|
| 72 |
|
---|
| 73 | [Storable]
|
---|
| 74 | protected IDynamicALPSSolution[] solutions;
|
---|
| 75 |
|
---|
| 76 | [Storable]
|
---|
| 77 | protected FunctionType functionType;
|
---|
| 78 |
|
---|
| 79 | [Storable]
|
---|
| 80 | protected IDynamicALPSSolution[] population;
|
---|
| 81 |
|
---|
| 82 | [Storable]
|
---|
| 83 | protected IDynamicALPSSolution[][] layerPopulation;
|
---|
| 84 |
|
---|
| 85 | [Storable]
|
---|
| 86 | protected bool[] activeLayer;
|
---|
| 87 |
|
---|
| 88 | [Storable]
|
---|
[17479] | 89 | protected double[] layerCrossoverProbability;
|
---|
| 90 |
|
---|
| 91 | [Storable]
|
---|
[17438] | 92 | protected IDynamicALPSSolution[][] layerDiscardPopulation;
|
---|
| 93 |
|
---|
| 94 | [Storable]
|
---|
[17479] | 95 | protected IDynamicALPSSolution[] layerDiscardIndivdual;
|
---|
| 96 |
|
---|
| 97 |
|
---|
| 98 | [Storable]
|
---|
[17438] | 99 | protected IDynamicALPSSolution[][] layerOffspringPopulation;
|
---|
| 100 |
|
---|
| 101 | [Storable]
|
---|
| 102 | protected IDynamicALPSSolution[][] layerJointPopulation;
|
---|
| 103 |
|
---|
| 104 | [Storable]
|
---|
| 105 | protected IDynamicALPSSolution[] offspringPopulation;
|
---|
| 106 |
|
---|
| 107 | //[Storable]
|
---|
| 108 | //protected IDynamicALPSSolution[] jointPopulation;
|
---|
| 109 |
|
---|
| 110 | [Storable]
|
---|
| 111 | protected int evaluatedSolutions;
|
---|
| 112 |
|
---|
| 113 | [Storable]
|
---|
| 114 | protected ExecutionContext executionContext;
|
---|
| 115 |
|
---|
| 116 | [Storable]
|
---|
| 117 | protected IScope globalScope;
|
---|
| 118 |
|
---|
| 119 | [Storable]
|
---|
| 120 | protected ExecutionState previousExecutionState;
|
---|
| 121 |
|
---|
| 122 | [Storable]
|
---|
| 123 | protected ExecutionState executionState;
|
---|
| 124 |
|
---|
[17479] | 125 | protected DoubleArray ReferencePoint {
|
---|
[17438] | 126 | get {
|
---|
[17479] | 127 | if (Problem is MultiObjectiveTestFunctionProblem) {
|
---|
| 128 | var problem = (MultiObjectiveTestFunctionProblem)Problem;
|
---|
| 129 | return problem.ReferencePoint;
|
---|
| 130 | }
|
---|
| 131 | else {
|
---|
| 132 | return null;
|
---|
| 133 | }
|
---|
[17438] | 134 | }
|
---|
| 135 | }
|
---|
| 136 | #endregion
|
---|
| 137 |
|
---|
| 138 | #region parameters
|
---|
| 139 | private const string SeedParameterName = "Seed";
|
---|
| 140 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
| 141 | private const string PopulationSizeParameterName = "PopulationSize";
|
---|
| 142 | private const string ResultPopulationSizeParameterName = "ResultPopulationSize";
|
---|
| 143 | private const string CrossoverProbabilityParameterName = "CrossoverProbability";
|
---|
| 144 | private const string CrossoverParameterName = "Crossover";
|
---|
| 145 | private const string MutationProbabilityParameterName = "MutationProbability";
|
---|
| 146 | private const string MutatorParameterName = "Mutator";
|
---|
| 147 | private const string MaximumEvaluatedSolutionsParameterName = "MaximumEvaluatedSolutions";
|
---|
| 148 | private const string RandomParameterName = "Random";
|
---|
| 149 | private const string AnalyzerParameterName = "Analyzer";
|
---|
[17479] | 150 |
|
---|
| 151 |
|
---|
[17438] | 152 | // MOEA-D parameters
|
---|
| 153 | //private const string NeighbourSizeParameterName = "NeighbourSize";
|
---|
| 154 | //private const string NeighbourhoodSelectionProbabilityParameterName = "NeighbourhoodSelectionProbability";
|
---|
| 155 | //private const string MaximumNumberOfReplacedSolutionsParameterName = "MaximumNumberOfReplacedSolutions";
|
---|
| 156 | //private const string FunctionTypeParameterName = "FunctionType";
|
---|
| 157 | // private const string NormalizeObjectivesParameterName = "NormalizeObjectives";
|
---|
| 158 |
|
---|
| 159 | // SMS-EMOA parameters:
|
---|
| 160 | private const string LambdaParameterName = "Lambda"; // The number of offspring size
|
---|
| 161 | private const string ALPSLayersParameterName = "ALPSLayers"; // The number of offspring size
|
---|
| 162 | private const string ALPSAgeGapParameterName = "ALPSAgeGap"; // The number of offspring size
|
---|
[17479] | 163 | private const string InitializeLayerPopulationMethodName = "InitializationLayerPopulations";
|
---|
[17438] | 164 |
|
---|
| 165 |
|
---|
| 166 |
|
---|
| 167 | // "Parameters" are defined in "HeuristicLab.Parameters"
|
---|
| 168 | // Contains: generic parameters of every class/algorithm/instance,
|
---|
| 169 | // It seems that "I***ValueParameter" is declared in "Heuristic.core", where "***ValueParameter" are defined in "HeuristicLab.Parameter"
|
---|
| 170 | // The function of "I***ValueParameter" is to bridge current scripts to "HeuristicLab.Parameter".
|
---|
| 171 | public IValueParameter<MultiAnalyzer> AnalyzerParameter {
|
---|
| 172 | get { return (ValueParameter<MultiAnalyzer>)Parameters[AnalyzerParameterName]; }
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | //public IConstrainedValueParameter<StringValue> FunctionTypeParameter
|
---|
| 176 | //{
|
---|
| 177 | // get { return (IConstrainedValueParameter<StringValue>)Parameters[FunctionTypeParameterName]; }
|
---|
| 178 | //}
|
---|
| 179 | //public IFixedValueParameter<IntValue> NeighbourSizeParameter
|
---|
| 180 | //{
|
---|
| 181 | // get { return (IFixedValueParameter<IntValue>)Parameters[NeighbourSizeParameterName]; }
|
---|
| 182 | //}
|
---|
| 183 | //public IFixedValueParameter<BoolValue> NormalizeObjectivesParameter
|
---|
| 184 | //{
|
---|
| 185 | // get { return (IFixedValueParameter<BoolValue>)Parameters[NormalizeObjectivesParameterName]; }
|
---|
| 186 | //}
|
---|
| 187 | //public IFixedValueParameter<IntValue> MaximumNumberOfReplacedSolutionsParameter
|
---|
| 188 | //{
|
---|
| 189 | // get { return (IFixedValueParameter<IntValue>)Parameters[MaximumNumberOfReplacedSolutionsParameterName]; }
|
---|
| 190 | //}
|
---|
| 191 | //public IFixedValueParameter<DoubleValue> NeighbourhoodSelectionProbabilityParameter
|
---|
| 192 | //{
|
---|
| 193 | // get { return (IFixedValueParameter<DoubleValue>)Parameters[NeighbourhoodSelectionProbabilityParameterName]; }
|
---|
| 194 | //}
|
---|
| 195 | public IFixedValueParameter<IntValue> SeedParameter {
|
---|
| 196 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
| 197 | }
|
---|
| 198 | public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
| 199 | get { return (IFixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
| 200 | }
|
---|
| 201 | private IValueParameter<IntValue> PopulationSizeParameter {
|
---|
| 202 | get { return (IValueParameter<IntValue>)Parameters[PopulationSizeParameterName]; }
|
---|
| 203 | }
|
---|
| 204 | // KF, SMS-EMOA
|
---|
| 205 | private IValueParameter<IntValue> LambdaParameter {
|
---|
| 206 | get { return (IValueParameter<IntValue>)Parameters[LambdaParameterName]; }
|
---|
| 207 | }
|
---|
| 208 | //// KF, DynamicALPS
|
---|
| 209 | private IValueParameter<IntValue> ALPSLayersParameter{
|
---|
| 210 | get { return (IValueParameter<IntValue>)Parameters[ALPSLayersParameterName]; }
|
---|
| 211 | }
|
---|
| 212 | private IValueParameter<IntValue> ALPSAgeGapParameter {
|
---|
| 213 | get { return (IValueParameter<IntValue>)Parameters[ALPSAgeGapParameterName]; }
|
---|
| 214 | }
|
---|
| 215 |
|
---|
[17479] | 216 | private IValueParameter<BoolValue> ALPSInitialzeLayerPopulationParameter {
|
---|
| 217 | get { return (IValueParameter<BoolValue>)Parameters[InitializeLayerPopulationMethodName]; }
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 |
|
---|
[17438] | 221 | private IValueParameter<IntValue> ResultPopulationSizeParameter {
|
---|
| 222 | get { return (IValueParameter<IntValue>)Parameters[ResultPopulationSizeParameterName]; }
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | public IValueParameter<PercentValue> CrossoverProbabilityParameter {
|
---|
| 226 | get { return (IValueParameter<PercentValue>)Parameters[CrossoverProbabilityParameterName]; }
|
---|
| 227 | }
|
---|
| 228 | public IConstrainedValueParameter<ICrossover> CrossoverParameter {
|
---|
| 229 | get { return (IConstrainedValueParameter<ICrossover>)Parameters[CrossoverParameterName]; }
|
---|
| 230 | }
|
---|
| 231 | public IValueParameter<PercentValue> MutationProbabilityParameter {
|
---|
| 232 | get { return (IValueParameter<PercentValue>)Parameters[MutationProbabilityParameterName]; }
|
---|
| 233 | }
|
---|
| 234 | public IConstrainedValueParameter<IManipulator> MutatorParameter {
|
---|
| 235 | get { return (IConstrainedValueParameter<IManipulator>)Parameters[MutatorParameterName]; }
|
---|
| 236 | }
|
---|
| 237 | public IValueParameter<IntValue> MaximumEvaluatedSolutionsParameter {
|
---|
| 238 | get { return (IValueParameter<IntValue>)Parameters[MaximumEvaluatedSolutionsParameterName]; }
|
---|
| 239 | }
|
---|
| 240 | public IValueParameter<IRandom> RandomParameter {
|
---|
| 241 | get { return (IValueParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
| 242 | }
|
---|
| 243 | #endregion
|
---|
| 244 |
|
---|
| 245 | #region parameter properties
|
---|
| 246 | public new IMultiObjectiveHeuristicOptimizationProblem Problem {
|
---|
| 247 | get { return (IMultiObjectiveHeuristicOptimizationProblem)base.Problem; }
|
---|
| 248 | set { base.Problem = value; }
|
---|
| 249 | }
|
---|
| 250 | public int Seed {
|
---|
| 251 | get { return SeedParameter.Value.Value; }
|
---|
| 252 | set { SeedParameter.Value.Value = value; }
|
---|
| 253 | }
|
---|
| 254 | public bool SetSeedRandomly {
|
---|
| 255 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
| 256 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
| 257 | }
|
---|
| 258 | public IntValue PopulationSize {
|
---|
| 259 | get { return PopulationSizeParameter.Value; }
|
---|
| 260 | set { PopulationSizeParameter.Value = value; }
|
---|
| 261 | }
|
---|
| 262 | public IntValue Lambda {
|
---|
| 263 | get { return LambdaParameter.Value; }
|
---|
| 264 | set { LambdaParameter.Value = value; }
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | public IntValue ResultPopulationSize {
|
---|
| 268 | get { return ResultPopulationSizeParameter.Value; }
|
---|
| 269 | set { ResultPopulationSizeParameter.Value = value; }
|
---|
| 270 | }
|
---|
| 271 |
|
---|
| 272 | public IntValue ALPSLayers {
|
---|
| 273 | get { return ALPSLayersParameter.Value; }
|
---|
| 274 | set { ALPSLayersParameter.Value = value; }
|
---|
| 275 | }
|
---|
| 276 |
|
---|
| 277 | public IntValue ALPSAgeGap {
|
---|
| 278 | get { return ALPSAgeGapParameter.Value; }
|
---|
| 279 | set { ALPSAgeGapParameter.Value = value; }
|
---|
| 280 | }
|
---|
[17479] | 281 | public BoolValue UseAverageAge {
|
---|
| 282 | get { return ALPSInitialzeLayerPopulationParameter.Value; }
|
---|
| 283 | set { ALPSInitialzeLayerPopulationParameter.Value = value; }
|
---|
| 284 | }
|
---|
[17438] | 285 |
|
---|
| 286 | public PercentValue CrossoverProbability {
|
---|
| 287 | get { return CrossoverProbabilityParameter.Value; }
|
---|
| 288 | set { CrossoverProbabilityParameter.Value = value; }
|
---|
| 289 | }
|
---|
| 290 | public ICrossover Crossover {
|
---|
| 291 | get { return CrossoverParameter.Value; }
|
---|
| 292 | set { CrossoverParameter.Value = value; }
|
---|
| 293 | }
|
---|
| 294 | public PercentValue MutationProbability {
|
---|
| 295 | get { return MutationProbabilityParameter.Value; }
|
---|
| 296 | set { MutationProbabilityParameter.Value = value; }
|
---|
| 297 | }
|
---|
| 298 | public IManipulator Mutator {
|
---|
| 299 | get { return MutatorParameter.Value; }
|
---|
| 300 | set { MutatorParameter.Value = value; }
|
---|
| 301 | }
|
---|
| 302 | public MultiAnalyzer Analyzer {
|
---|
| 303 | get { return AnalyzerParameter.Value; }
|
---|
| 304 | set { AnalyzerParameter.Value = value; }
|
---|
| 305 | }
|
---|
| 306 | public IntValue MaximumEvaluatedSolutions {
|
---|
| 307 | get { return MaximumEvaluatedSolutionsParameter.Value; }
|
---|
| 308 | set { MaximumEvaluatedSolutionsParameter.Value = value; }
|
---|
| 309 | }
|
---|
| 310 | #endregion
|
---|
| 311 |
|
---|
| 312 | #region constructors
|
---|
| 313 | public DynamicALPSAlgorithmBase() {
|
---|
| 314 | // Add or define or specify the parameters that may be use in SMS-EMOA.
|
---|
| 315 | // ***("Name", "Description", "Value")
|
---|
| 316 | // Name Type Description
|
---|
| 317 | // FixedValueParameter: ANY Not changed???
|
---|
| 318 | // ValueParameter: Changable??? What is the difference between "ValueParameter" and "FixedVlaueParameter"?????
|
---|
| 319 |
|
---|
| 320 |
|
---|
| 321 | // types:
|
---|
| 322 | // IntValue
|
---|
| 323 | // BoolValue
|
---|
| 324 | // DoubleValue
|
---|
| 325 | // PercentValue
|
---|
| 326 | // ICrossover:
|
---|
| 327 | // IManipulator:
|
---|
| 328 | // IRandom:
|
---|
| 329 | // MultiAnalyzer:
|
---|
| 330 | // ---------
|
---|
| 331 | Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
| 332 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
|
---|
| 333 | Parameters.Add(new ValueParameter<IntValue>(PopulationSizeParameterName, "The size of the population of solutions.", new IntValue(100)));
|
---|
| 334 | Parameters.Add(new ValueParameter<IntValue>(ResultPopulationSizeParameterName, "The size of the population of solutions.", new IntValue(100)));
|
---|
| 335 | Parameters.Add(new ValueParameter<PercentValue>(CrossoverProbabilityParameterName, "The probability that the crossover operator is applied.", new PercentValue(0.9)));
|
---|
| 336 | Parameters.Add(new ConstrainedValueParameter<ICrossover>(CrossoverParameterName, "The operator used to cross solutions."));
|
---|
| 337 | Parameters.Add(new ValueParameter<PercentValue>(MutationProbabilityParameterName, "The probability that the mutation operator is applied on a solution.", new PercentValue(0.25)));
|
---|
| 338 | Parameters.Add(new ConstrainedValueParameter<IManipulator>(MutatorParameterName, "The operator used to mutate solutions."));
|
---|
| 339 | Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer()));
|
---|
| 340 | Parameters.Add(new ValueParameter<IntValue>(MaximumEvaluatedSolutionsParameterName, "The maximum number of evaluated solutions (approximately).", new IntValue(100_000)));
|
---|
| 341 | Parameters.Add(new ValueParameter<IRandom>(RandomParameterName, new FastRandom()));
|
---|
[17479] | 342 | Parameters.Add(new ValueParameter<BoolValue>(InitializeLayerPopulationMethodName, "Whether use average age to initialize the layer population or not. If not, move the older individuals to layer populations", new BoolValue(true)));
|
---|
[17438] | 343 |
|
---|
| 344 | // SMS-EMOA, kf
|
---|
| 345 | Parameters.Add(new ValueParameter<IntValue>(LambdaParameterName, "The size of the offsprings. Now, it only works when lambda = 1", new IntValue(1)));
|
---|
| 346 | // DynamicALPS, KF
|
---|
| 347 | Parameters.Add(new ValueParameter<IntValue>(ALPSLayersParameterName, "Test, maximum = 1000, defualt is 1", new IntValue(10)));
|
---|
| 348 | Parameters.Add(new ValueParameter<IntValue>(ALPSAgeGapParameterName, "Test, maximum = 1000, defualt is 20", new IntValue(20)));
|
---|
| 349 |
|
---|
| 350 |
|
---|
| 351 | }
|
---|
| 352 |
|
---|
| 353 | protected DynamicALPSAlgorithmBase(DynamicALPSAlgorithmBase original, Cloner cloner) : base(original, cloner) {
|
---|
| 354 | functionType = original.functionType;
|
---|
| 355 | evaluatedSolutions = original.evaluatedSolutions;
|
---|
| 356 | previousExecutionState = original.previousExecutionState;
|
---|
| 357 |
|
---|
| 358 | if (original.IdealPoint != null) {
|
---|
| 359 | IdealPoint = (double[])original.IdealPoint.Clone();
|
---|
| 360 | }
|
---|
| 361 |
|
---|
| 362 | if (original.NadirPoint != null) {
|
---|
| 363 | NadirPoint = (double[])original.NadirPoint.Clone();
|
---|
| 364 | }
|
---|
| 365 |
|
---|
| 366 | if (original.lambda_moead != null) {
|
---|
| 367 | lambda_moead = (double[][])original.lambda_moead.Clone();
|
---|
| 368 | }
|
---|
| 369 |
|
---|
| 370 | if (original.neighbourhood != null) {
|
---|
| 371 | neighbourhood = (int[][])original.neighbourhood.Clone();
|
---|
| 372 | }
|
---|
| 373 |
|
---|
| 374 | if (original.solutions != null) {
|
---|
| 375 | solutions = original.solutions.Select(cloner.Clone).ToArray();
|
---|
| 376 | }
|
---|
| 377 |
|
---|
| 378 | if (original.population != null) {
|
---|
| 379 | population = original.population.Select(cloner.Clone).ToArray();
|
---|
| 380 | }
|
---|
| 381 |
|
---|
| 382 | if (original.offspringPopulation != null) {
|
---|
| 383 | offspringPopulation = original.offspringPopulation.Select(cloner.Clone).ToArray();
|
---|
| 384 | }
|
---|
| 385 |
|
---|
| 386 | //if (original.jointPopulation != null) {
|
---|
| 387 | // jointPopulation = original.jointPopulation.Select(x => cloner.Clone(x)).ToArray();
|
---|
| 388 | //}
|
---|
| 389 |
|
---|
| 390 | if (original.executionContext != null) {
|
---|
| 391 | executionContext = cloner.Clone(original.executionContext);
|
---|
| 392 | }
|
---|
| 393 |
|
---|
| 394 | if (original.globalScope != null) {
|
---|
| 395 | globalScope = cloner.Clone(original.globalScope);
|
---|
| 396 | }
|
---|
| 397 | }
|
---|
| 398 |
|
---|
| 399 |
|
---|
| 400 |
|
---|
| 401 | [StorableConstructor]
|
---|
| 402 | protected DynamicALPSAlgorithmBase(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
| 403 | #endregion
|
---|
| 404 |
|
---|
| 405 | private void InitializePopulation(ExecutionContext executionContext, CancellationToken cancellationToken, IRandom random, bool[] maximization) {
|
---|
| 406 | // creator: how to create the initilized population. "UniformRandom" is used here.
|
---|
| 407 | // TODO: LHS, latin hypercube sampling? Exisit???
|
---|
| 408 | var creator = Problem.SolutionCreator;
|
---|
| 409 | var evaluator = Problem.Evaluator;
|
---|
| 410 |
|
---|
| 411 | // dimensions: objective space
|
---|
| 412 | var dimensions = maximization.Length;
|
---|
| 413 | var populationSize = PopulationSize.Value;
|
---|
| 414 | population = new IDynamicALPSSolution[populationSize];
|
---|
| 415 |
|
---|
| 416 | var parentScope = executionContext.Scope;
|
---|
| 417 | // first, create all individuals
|
---|
| 418 | for (int i = 0; i < populationSize; ++i) {
|
---|
| 419 | var childScope = new Scope(i.ToString()) { Parent = parentScope };
|
---|
| 420 | ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(creator, childScope));
|
---|
| 421 | parentScope.SubScopes.Add(childScope);
|
---|
| 422 | }
|
---|
| 423 |
|
---|
| 424 | for (int i = 0; i < populationSize; ++i) {
|
---|
| 425 | var childScope = parentScope.SubScopes[i];
|
---|
| 426 | ExecuteOperation(executionContext, cancellationToken, executionContext.CreateChildOperation(evaluator, childScope));
|
---|
| 427 |
|
---|
| 428 | var qualities = (DoubleArray)childScope.Variables["Qualities"].Value;
|
---|
| 429 |
|
---|
| 430 | // solution: a method, contains a decision vector and objecitve values
|
---|
| 431 | // solution.Qualities: objective values, fitness values
|
---|
| 432 | // solution.Individual: decision vector
|
---|
| 433 | var solution = new DynamicALPSSolution(childScope, dimensions, 0);
|
---|
| 434 | for (int j = 0; j < dimensions; ++j) {
|
---|
| 435 | // TODO: convert maximization problems into minimization problems.
|
---|
| 436 | solution.Qualities[j] = maximization[j] ? 1 - qualities[j] : qualities[j];
|
---|
| 437 | }
|
---|
| 438 |
|
---|
| 439 | // population is a collection of solution.
|
---|
| 440 | population[i] = solution;
|
---|
| 441 |
|
---|
| 442 | // KF, DyanmicALPS
|
---|
| 443 | population[i].HypervolumeContribution[0] = -0;
|
---|
| 444 | population[i].NondominanceRanking[0] = -0;
|
---|
| 445 | population[i].Age = 1;
|
---|
| 446 | population[i].IndividualPc = CrossoverProbability.Value;
|
---|
| 447 | population[i].IndividualPc = MutationProbability.Value;
|
---|
| 448 | }
|
---|
| 449 | }
|
---|
| 450 |
|
---|
| 451 | protected void InitializeAlgorithm(CancellationToken cancellationToken) { // Type of random operator, "FastRandom" in this script.
|
---|
| 452 | // RandomParameter <-- Parameters in "HeuristicLab.Core.ParameterizedNameItem",
|
---|
| 453 | var rand = RandomParameter.Value;
|
---|
| 454 |
|
---|
| 455 | // Initialize random seed
|
---|
| 456 | // If random seed exist, get it; otherwise,
|
---|
| 457 | if (SetSeedRandomly) Seed = RandomSeedGenerator.GetSeed();
|
---|
| 458 |
|
---|
| 459 | // Call
|
---|
| 460 | rand.Reset(Seed);
|
---|
| 461 |
|
---|
| 462 | bool[] maximization = ((BoolArray)Problem.MaximizationParameter.ActualValue).CloneAsArray();
|
---|
| 463 |
|
---|
| 464 | // dimensions: the dimension in an objective space
|
---|
| 465 | var dimensions = maximization.Length;
|
---|
| 466 |
|
---|
| 467 |
|
---|
| 468 | var populationSize = PopulationSize.Value;
|
---|
| 469 |
|
---|
| 470 | InitializePopulation(executionContext, cancellationToken, rand, maximization);
|
---|
| 471 |
|
---|
| 472 | IdealPoint = new double[dimensions];
|
---|
| 473 | IdealPoint.UpdateIdeal(population);
|
---|
| 474 |
|
---|
| 475 | NadirPoint = Enumerable.Repeat(double.MinValue, dimensions).ToArray();
|
---|
| 476 | //NadirPoint = new double[dimensions];
|
---|
| 477 | NadirPoint.UpdateNadir(population);
|
---|
| 478 |
|
---|
| 479 |
|
---|
| 480 | evaluatedSolutions = populationSize;
|
---|
| 481 | }
|
---|
| 482 |
|
---|
| 483 | protected override void Initialize(CancellationToken cancellationToken) {
|
---|
| 484 | globalScope = new Scope("Global Scope");
|
---|
| 485 | executionContext = new ExecutionContext(null, this, globalScope);
|
---|
| 486 |
|
---|
| 487 | // set the execution context for parameters to allow lookup
|
---|
| 488 | foreach (var parameter in Problem.Parameters.OfType<IValueParameter>()) {
|
---|
| 489 | // we need all of these in order for the wiring of the operators to work
|
---|
| 490 | globalScope.Variables.Add(new Variable(parameter.Name, parameter.Value));
|
---|
| 491 | }
|
---|
| 492 | globalScope.Variables.Add(new Variable("Results", Results)); // make results available as a parameter for analyzers etc.
|
---|
| 493 |
|
---|
| 494 | base.Initialize(cancellationToken);
|
---|
| 495 | }
|
---|
| 496 |
|
---|
| 497 | public override bool SupportsPause => true;
|
---|
| 498 |
|
---|
| 499 |
|
---|
| 500 |
|
---|
| 501 |
|
---|
| 502 | // Mate Selection.
|
---|
| 503 | // Randomly select a specific number of individuals for later operators.
|
---|
| 504 | // Inputs:
|
---|
| 505 | // 1. random: Random number generate method
|
---|
| 506 | // 2. numberOfSolutionToSelect: The number of selection
|
---|
| 507 | // Outputs:
|
---|
| 508 | // 1. listOfSolutions: The selection individuals
|
---|
| 509 | protected List<int> MatingSelection(IRandom random, int numberOfSolutionsToSelect) {
|
---|
| 510 | int populationSize = PopulationSize.Value;
|
---|
| 511 |
|
---|
| 512 | var listOfSolutions = new List<int>(numberOfSolutionsToSelect);
|
---|
| 513 |
|
---|
| 514 | while (listOfSolutions.Count < numberOfSolutionsToSelect) {
|
---|
| 515 | var selectedSolution = random.Next(populationSize);
|
---|
| 516 |
|
---|
| 517 | bool flag = true;
|
---|
| 518 | foreach (int individualId in listOfSolutions) {
|
---|
| 519 | if (individualId == selectedSolution) {
|
---|
| 520 | flag = false;
|
---|
| 521 | break;
|
---|
| 522 | }
|
---|
| 523 | }
|
---|
| 524 |
|
---|
| 525 | if (flag) {
|
---|
| 526 | listOfSolutions.Add(selectedSolution);
|
---|
| 527 | }
|
---|
| 528 | }
|
---|
| 529 | return listOfSolutions;
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | protected void ApplyCrossover(int lambda) {
|
---|
| 533 | }
|
---|
| 534 |
|
---|
| 535 | protected void ApplyMutation(int lambda) {
|
---|
| 536 | }
|
---|
| 537 |
|
---|
| 538 |
|
---|
| 539 | protected void ApplyEvaluation(int lambda) {
|
---|
| 540 | }
|
---|
| 541 |
|
---|
| 542 | protected void ApplyMateSelection(int rho) {
|
---|
| 543 | }
|
---|
| 544 |
|
---|
| 545 | protected void InitializeLayer(int indexLayer, int populationSize, int lambda) {
|
---|
| 546 | layerPopulation[indexLayer] = new IDynamicALPSSolution[populationSize];
|
---|
| 547 | layerJointPopulation[indexLayer] = new IDynamicALPSSolution[populationSize + lambda];
|
---|
| 548 | layerOffspringPopulation[indexLayer] = new IDynamicALPSSolution[lambda];
|
---|
| 549 | layerDiscardPopulation[indexLayer] = new IDynamicALPSSolution[populationSize];
|
---|
| 550 | activeLayer[indexLayer] = true;
|
---|
| 551 | }
|
---|
| 552 |
|
---|
| 553 |
|
---|
| 554 | // Select/Discard the individual(s) according to HVC
|
---|
| 555 | protected void SmetricSelection(int lambda, int nLayerALPS) {
|
---|
| 556 | var wholePopulation = layerJointPopulation[nLayerALPS];
|
---|
| 557 | var qualities = wholePopulation.Select(x => x.Qualities).ToArray();
|
---|
| 558 |
|
---|
[17479] | 559 | var maxPoint = Enumerable.Range(0, IdealPoint.Length).Select(idx => qualities.Max(q => q[idx])).ToArray();
|
---|
| 560 |
|
---|
[17438] | 561 | var maximization = Enumerable.Repeat(false, IdealPoint.Length).ToArray(); // Minimization or maximization ????
|
---|
| 562 | var pf2 = DominationCalculator<IDynamicALPSSolution>.CalculateAllParetoFronts(wholePopulation, qualities, maximization, out int[] ranking);
|
---|
| 563 |
|
---|
| 564 | int numberOfLayer; // number of layers in PF
|
---|
| 565 | int numberOfLastLayer; // number of discarded points in PF (the number of points in the last layer)
|
---|
| 566 |
|
---|
| 567 | pf2.RemoveAt(pf2.Count() - 1);
|
---|
| 568 | numberOfLayer = pf2.Count();
|
---|
| 569 | numberOfLastLayer = pf2[numberOfLayer - 1].Count();
|
---|
| 570 | double[] hvc = new double[numberOfLastLayer];
|
---|
| 571 | int discardIndex;
|
---|
| 572 | if (numberOfLastLayer > lambda) {
|
---|
| 573 | double tempHV;
|
---|
| 574 | double smetric;
|
---|
| 575 | var lastLayer = pf2.Last();
|
---|
| 576 |
|
---|
| 577 | // TODO: This can be use for dynamic reference point strategy later. Kaifeng , 02/2020
|
---|
| 578 | // smetric = Hypervolume.Calculate(lastLayer.Select(x => x.Item2), Enumerable.Repeat(11d, NadirPoint.Length).ToArray(), maximization);
|
---|
[17479] | 579 |
|
---|
| 580 | var reference = Enumerable.Repeat(double.MaxValue, maximization.Length).ToArray(); // TODO Dynamic Reference point for each layer. Maximum * 1.1
|
---|
| 581 | //if (nLayerALPS != 0) {
|
---|
| 582 | for (int i = 0; i < reference.Length; i++) {
|
---|
| 583 | reference[i] = 1.1 * maxPoint[i];
|
---|
| 584 | if (reference[i] > 10000) {
|
---|
| 585 | reference[i] = 9999; // set a upper bound for the reference point
|
---|
| 586 | }
|
---|
| 587 | }
|
---|
| 588 | //}
|
---|
| 589 | //else {
|
---|
| 590 | // reference = ReferencePoint.ToArray();
|
---|
| 591 | //}
|
---|
| 592 |
|
---|
[17438] | 593 | var nondominated = NonDominatedSelect.GetDominatingVectors(lastLayer.Select(x => x.Item2), reference, maximization, false);
|
---|
| 594 | smetric = nondominated.Any() ? Hypervolume.Calculate(nondominated, reference, maximization) : int.MinValue;
|
---|
| 595 |
|
---|
| 596 | for (int ii = 0; ii < lastLayer.Count; ++ii) {
|
---|
| 597 | try { // TODO: This can be use for dynamic reference point strategy later. Kaifeng , 02/2020
|
---|
| 598 | // tempHV = Hypervolume.Calculate(indices.Where(idx => idx != ii).Select(idx => lastLayer[idx].Item2), Enumerable.Repeat(11d, NadirPoint.Length).ToArray(), maximization);
|
---|
| 599 | tempHV = Hypervolume.Calculate(Enumerable.Range(0, lastLayer.Count).Where(idx => idx != ii).Select(idx => lastLayer[idx].Item2), reference, maximization);
|
---|
| 600 | }
|
---|
| 601 | catch {
|
---|
| 602 | tempHV = int.MinValue;
|
---|
| 603 | }
|
---|
| 604 | hvc[ii] = smetric - tempHV;
|
---|
| 605 | tempHV = 0;
|
---|
| 606 | }
|
---|
[17479] | 607 |
|
---|
[17438] | 608 | discardIndex = Array.IndexOf(hvc, hvc.Min());
|
---|
[17479] | 609 | //layerDiscardPopulation[nLayerALPS] = pf2[numberOfLayer - 1][discardIndex].Item1.ToArray();
|
---|
| 610 | layerDiscardIndivdual[nLayerALPS] = pf2[numberOfLayer - 1].Select(x => x.Item1).ToArray()[discardIndex];
|
---|
[17438] | 611 | pf2[numberOfLayer - 1].RemoveAt(discardIndex);
|
---|
| 612 | }
|
---|
| 613 | else {
|
---|
| 614 | // TODO: This should be updated when $lambda > 1$
|
---|
[17479] | 615 | discardIndex = pf2.Count() - 1;
|
---|
| 616 | layerDiscardIndivdual[nLayerALPS] = pf2[discardIndex].Select(x => x.Item1).ToArray()[0];
|
---|
[17438] | 617 | pf2.RemoveAt(pf2.Count() - 1);
|
---|
| 618 | numberOfLayer = numberOfLayer - 1;
|
---|
[17479] | 619 |
|
---|
[17438] | 620 | }
|
---|
| 621 | layerPopulation[nLayerALPS] = pf2.SelectMany(x => x.Select(y => y.Item1)).ToArray();
|
---|
[17479] | 622 |
|
---|
[17438] | 623 | }
|
---|
| 624 |
|
---|
[17479] | 625 | public static double SampleGaussian(IRandom random, double mean, double stddev) {
|
---|
| 626 | // The method requires sampling from a uniform random of (0,1]
|
---|
| 627 | // but Random.NextDouble() returns a sample of [0,1).
|
---|
| 628 | double x1 = 1 - random.NextDouble();
|
---|
| 629 | double x2 = 1 - random.NextDouble();
|
---|
| 630 |
|
---|
| 631 | double y1 = Math.Sqrt(-2.0 * Math.Log(x1)) * Math.Cos(2.0 * Math.PI * x2);
|
---|
| 632 | return y1 * stddev + mean;
|
---|
| 633 | }
|
---|
| 634 |
|
---|
[17438] | 635 | protected int SMSEMOA(int populationSize, int lambda, int counterLayerALPS) {
|
---|
| 636 | var innerToken = new CancellationToken();
|
---|
| 637 | bool[] maximization = ((BoolArray)Problem.MaximizationParameter.ActualValue).CloneAsArray();
|
---|
| 638 | var maximumEvaluatedSolutions = MaximumEvaluatedSolutions.Value;
|
---|
| 639 | var crossover = Crossover;
|
---|
[17479] | 640 | var crossoverProbability = layerCrossoverProbability[0];
|
---|
[17438] | 641 | var mutator = Mutator;
|
---|
| 642 | var mutationProbability = MutationProbability.Value;
|
---|
| 643 | var evaluator = Problem.Evaluator;
|
---|
| 644 | var analyzer = Analyzer;
|
---|
| 645 | var rand = RandomParameter.Value;
|
---|
| 646 |
|
---|
| 647 |
|
---|
| 648 | int indexOffspring = 0;
|
---|
| 649 | var mates = MatingSelection(rand, 2); // select parents
|
---|
| 650 | //var s1 = (IScope)population[mates[0]].Individual.Clone();
|
---|
| 651 | //var s2 = (IScope)population[mates[1]].Individual.Clone();
|
---|
| 652 | //var ages = population.Select(x => x.Age).ToArray();
|
---|
| 653 |
|
---|
| 654 | var s1 = (IScope)layerPopulation[counterLayerALPS][mates[0]].Individual.Clone();
|
---|
| 655 | var s2 = (IScope)layerPopulation[counterLayerALPS][mates[1]].Individual.Clone();
|
---|
| 656 | var ages = layerPopulation[counterLayerALPS].Select(x => x.Age).ToArray();
|
---|
| 657 |
|
---|
| 658 | var s1_age = ages[mates[0]];
|
---|
| 659 | var s2_age = ages[mates[1]];
|
---|
| 660 | int offSpringAge = 0;
|
---|
| 661 | s1.Parent = s2.Parent = globalScope;
|
---|
| 662 | IScope childScope = null;
|
---|
| 663 |
|
---|
[17479] | 664 | // crossoverProbability = crossoverProbability - 0.02* counterLayerALPS;
|
---|
| 665 | //var test = SampleGaussian(rand, 0, 1);
|
---|
| 666 |
|
---|
| 667 | //crossoverProbability = 1 / (1 + Math.Exp(-0.02 * SampleGaussian(rand, 0, 1)) * (1 - crossoverProbability) / crossoverProbability);
|
---|
| 668 |
|
---|
| 669 | if (crossoverProbability < 0.5)
|
---|
| 670 | crossoverProbability = 0.5;
|
---|
| 671 | else if(crossoverProbability > 0.95)
|
---|
| 672 | {
|
---|
| 673 | crossoverProbability = 0.95;
|
---|
| 674 | }
|
---|
| 675 | layerCrossoverProbability[counterLayerALPS] = crossoverProbability;
|
---|
| 676 |
|
---|
[17438] | 677 | // crossover
|
---|
| 678 | if (rand.NextDouble() < crossoverProbability) {
|
---|
| 679 | childScope = new Scope($"{mates[0]}+{mates[1]}") { Parent = executionContext.Scope };
|
---|
| 680 | childScope.SubScopes.Add(s1);
|
---|
| 681 | childScope.SubScopes.Add(s2);
|
---|
| 682 | var opCrossover = executionContext.CreateChildOperation(crossover, childScope);
|
---|
| 683 | ExecuteOperation(executionContext, innerToken, opCrossover);
|
---|
| 684 | offSpringAge = Math.Max(s1_age, s2_age) + 1;
|
---|
| 685 | childScope.SubScopes.Clear(); // <<-- VERY IMPORTANT!
|
---|
| 686 | }
|
---|
| 687 | else { // MUTATION POLISHI
|
---|
| 688 | if (childScope == null) {
|
---|
[17479] | 689 | offSpringAge = ages[mates[0]];
|
---|
[17438] | 690 | }
|
---|
| 691 | else {
|
---|
| 692 | }
|
---|
| 693 | childScope = childScope ?? s1;
|
---|
| 694 | var opMutation = executionContext.CreateChildOperation(mutator, childScope);
|
---|
| 695 | ExecuteOperation(executionContext, innerToken, opMutation);
|
---|
[17479] | 696 | offSpringAge = offSpringAge + 1;
|
---|
[17438] | 697 | }
|
---|
| 698 | if (childScope != null) { // Evaluate the childScope
|
---|
| 699 | var opEvaluation = executionContext.CreateChildOperation(evaluator, childScope);
|
---|
| 700 | ExecuteOperation(executionContext, innerToken, opEvaluation);
|
---|
| 701 | // childScope
|
---|
| 702 | var qualities = (DoubleArray)childScope.Variables["Qualities"].Value;
|
---|
| 703 | var childSolution = new DynamicALPSSolution(childScope, maximization.Length, 0);
|
---|
| 704 | // set child qualities
|
---|
| 705 | for (int j = 0; j < maximization.Length; ++j) {
|
---|
| 706 | childSolution.Qualities[j] = maximization[j] ? 1 - qualities[j] : qualities[j];
|
---|
| 707 | }
|
---|
| 708 | IdealPoint.UpdateIdeal(childSolution.Qualities);
|
---|
| 709 | NadirPoint.UpdateNadir(childSolution.Qualities);
|
---|
| 710 | // TODO, KF -- For later usage when $lambda > 1$
|
---|
| 711 | childSolution.HypervolumeContribution = null;
|
---|
| 712 | childSolution.NondominanceRanking = null;
|
---|
| 713 | childSolution.Age = offSpringAge;
|
---|
| 714 | layerOffspringPopulation[counterLayerALPS][indexOffspring] = childSolution;
|
---|
| 715 | ++evaluatedSolutions;
|
---|
| 716 | indexOffspring += 1;
|
---|
| 717 | }
|
---|
| 718 | else {
|
---|
| 719 | // no crossover or mutation were applied, a child was not produced, do nothing
|
---|
| 720 | }
|
---|
| 721 |
|
---|
| 722 |
|
---|
| 723 | layerJointPopulation[counterLayerALPS] = new IDynamicALPSSolution[populationSize + lambda];
|
---|
| 724 | layerPopulation[counterLayerALPS].CopyTo(layerJointPopulation[counterLayerALPS], 0);
|
---|
| 725 | layerOffspringPopulation[counterLayerALPS].CopyTo(layerJointPopulation[counterLayerALPS], populationSize);
|
---|
| 726 |
|
---|
| 727 | SmetricSelection(lambda, counterLayerALPS); // SMS-EMOA
|
---|
| 728 | return evaluatedSolutions;
|
---|
| 729 | }
|
---|
| 730 |
|
---|
| 731 |
|
---|
| 732 |
|
---|
| 733 |
|
---|
| 734 |
|
---|
| 735 |
|
---|
[17479] | 736 | // Update the Pareto-front approximation set and scatter the solutions in PF approximation set.
|
---|
| 737 | protected ResultCollection UpdateParetoFronts(IDynamicALPSSolution[] solutions, double[] IdealPoint) {
|
---|
| 738 |
|
---|
[17438] | 739 |
|
---|
| 740 | //var qualities = population.Select(x => Enumerable.Range(0, NadirPoint.Length).Select(i => x.Qualities[i] / NadirPoint[i]).ToArray()).ToArray();
|
---|
[17479] | 741 | var qualities = solutions.Select(x => x.Qualities).ToArray();
|
---|
[17438] | 742 | var maximization = Enumerable.Repeat(false, IdealPoint.Length).ToArray(); // DynamicALPS minimizes everything internally
|
---|
[17479] | 743 | var pf = DominationCalculator<IDynamicALPSSolution>.CalculateBestParetoFront(solutions, qualities, maximization);
|
---|
[17438] | 744 |
|
---|
[17479] | 745 | var pf2 = DominationCalculator<IDynamicALPSSolution>.CalculateAllParetoFronts(solutions, qualities, maximization, out int[] ranking);
|
---|
[17438] | 746 | var n = (int)EnumerableExtensions.BinomialCoefficient(IdealPoint.Length, 2);
|
---|
| 747 |
|
---|
| 748 |
|
---|
| 749 | // Struture hypervolume
|
---|
| 750 | // [0,0]: Value of HV
|
---|
| 751 | // [0,1]: PF size, $|PF|$
|
---|
| 752 | var hypervolumes = new DoubleMatrix(n == 1 ? 1 : n + 1, 2) { ColumnNames = new[] { "PF hypervolume", "PF size" } };
|
---|
| 753 |
|
---|
| 754 |
|
---|
| 755 | // HV calculation
|
---|
| 756 | // pf.Select(x => x.Item2): the "Item2" in var "pd"
|
---|
| 757 | // Enumerable.Repeat(1d, NadirPoint.Length).ToArray(): reference point
|
---|
| 758 | // maximization: type of optimization problem:
|
---|
| 759 | // True: maximization problem
|
---|
| 760 | // False: minimization problem
|
---|
[17479] | 761 | var reference = Enumerable.Repeat(double.MaxValue, maximization.Length).ToArray();
|
---|
| 762 | if (ReferencePoint is null) { // KF, 20200217 -- fix no reference point on real-world applications. If No reference points in Algorithms, use 1.1 \times max objective values as the reference point
|
---|
| 763 | for (int i = 0; i < reference.Length; i++) {
|
---|
| 764 | reference[i] = 1.1 * reference[i];
|
---|
| 765 | if (reference[i] > 10000) {
|
---|
| 766 | reference[i] = 9999; // set a upper bound for the reference point
|
---|
| 767 | }
|
---|
| 768 | }
|
---|
| 769 | }
|
---|
| 770 | else {
|
---|
| 771 | reference = ReferencePoint.ToArray();
|
---|
| 772 | }
|
---|
| 773 |
|
---|
[17438] | 774 | var nondominated = NonDominatedSelect.GetDominatingVectors(pf.Select(x => x.Item2), reference, maximization, false);
|
---|
| 775 | hypervolumes[0, 0] = nondominated.Any() ? Hypervolume.Calculate(nondominated, reference, maximization) : int.MinValue;
|
---|
| 776 |
|
---|
| 777 | //hypervolumes[0, 0] = Hypervolume.Calculate(pf.Select(x => x.Item2), reference, maximization);
|
---|
| 778 | hypervolumes[0, 1] = pf.Count;
|
---|
| 779 | Console.WriteLine("Current HV is", hypervolumes[0, 0]);
|
---|
| 780 |
|
---|
| 781 | var elementNames = new List<string>() { "Pareto Front" };
|
---|
[17479] | 782 | var results = new ResultCollection();
|
---|
[17438] | 783 |
|
---|
[17479] | 784 | ResultCollection innerResults;
|
---|
| 785 | if (results.ContainsKey("Hypervolume Analysis")) {
|
---|
| 786 | innerResults = (ResultCollection)results["Hypervolume Analysis"].Value;
|
---|
[17438] | 787 | }
|
---|
| 788 | else {
|
---|
[17479] | 789 | innerResults = new ResultCollection();
|
---|
| 790 | results.AddOrUpdateResult("Hypervolume Analysis", innerResults);
|
---|
[17438] | 791 | }
|
---|
| 792 |
|
---|
| 793 | ScatterPlot sp;
|
---|
| 794 | if (IdealPoint.Length == 2) {
|
---|
| 795 | var points = pf.Select(x => new Point2D<double>(x.Item2[0], x.Item2[1]));
|
---|
| 796 | var r = OnlinePearsonsRCalculator.Calculate(points.Select(x => x.X), points.Select(x => x.Y), out OnlineCalculatorError error);
|
---|
| 797 | if (error != OnlineCalculatorError.None) { r = double.NaN; }
|
---|
| 798 | var resultName = "Pareto Front Analysis ";
|
---|
[17479] | 799 | if (!innerResults.ContainsKey(resultName)) {
|
---|
[17438] | 800 | sp = new ScatterPlot() {
|
---|
[17479] | 801 | //VisualProperties = {
|
---|
| 802 | // XAxisMinimumAuto = true, XAxisMinimumFixedValue = 0d, XAxisMaximumAuto = false, XAxisMaximumFixedValue = 1d,
|
---|
| 803 | // YAxisMinimumAuto = true, YAxisMinimumFixedValue = 0d, YAxisMaximumAuto = false, YAxisMaximumFixedValue = 1d
|
---|
| 804 | //}
|
---|
[17438] | 805 | };
|
---|
| 806 | sp.Rows.Add(new ScatterPlotDataRow(resultName, "", points) { VisualProperties = { PointSize = 8 } });
|
---|
[17479] | 807 | innerResults.AddOrUpdateResult(resultName, sp);
|
---|
[17438] | 808 | }
|
---|
| 809 | else {
|
---|
[17479] | 810 | sp = (ScatterPlot)innerResults[resultName].Value;
|
---|
[17438] | 811 | sp.Rows[resultName].Points.Replace(points);
|
---|
| 812 | }
|
---|
| 813 | sp.Name = $"Dimensions [0, 1], correlation: {r.ToString("N2")}";
|
---|
| 814 | }
|
---|
| 815 | else if (IdealPoint.Length > 2) {
|
---|
| 816 | var indices = Enumerable.Range(0, IdealPoint.Length).ToArray();
|
---|
| 817 | var visualProperties = new ScatterPlotDataRowVisualProperties { PointSize = 8, Color = Color.LightGray };
|
---|
| 818 | var combinations = indices.Combinations(2).ToArray();
|
---|
| 819 | var maximization2d = new[] { false, false };
|
---|
| 820 | var solutions2d = pf.Select(x => x.Item1).ToArray();
|
---|
| 821 | for (int i = 0; i < combinations.Length; ++i) {
|
---|
| 822 | var c = combinations[i].ToArray();
|
---|
| 823 |
|
---|
| 824 | // calculate the hypervolume in the 2d coordinate space
|
---|
| 825 | var reference2d = new[] { 1d, 1d };
|
---|
| 826 | var qualities2d = pf.Select(x => new[] { x.Item2[c[0]], x.Item2[c[1]] }).ToArray();
|
---|
| 827 | var pf2d = DominationCalculator<IDynamicALPSSolution>.CalculateBestParetoFront(solutions2d, qualities2d, maximization2d);
|
---|
| 828 |
|
---|
| 829 | hypervolumes[i + 1, 0] = pf2d.Count > 0 ? Hypervolume.Calculate(pf2d.Select(x => x.Item2), reference2d, maximization2d) : 0d;
|
---|
| 830 | hypervolumes[i + 1, 1] = pf2d.Count;
|
---|
| 831 |
|
---|
| 832 | var resultName = $"Pareto Front Analysis [{c[0]}, {c[1]}]";
|
---|
| 833 | elementNames.Add(resultName);
|
---|
| 834 |
|
---|
| 835 | var points = pf.Select(x => new Point2D<double>(x.Item2[c[0]], x.Item2[c[1]]));
|
---|
| 836 | var pf2dPoints = pf2d.Select(x => new Point2D<double>(x.Item2[0], x.Item2[1]));
|
---|
| 837 |
|
---|
[17479] | 838 | if (!innerResults.ContainsKey(resultName)) {
|
---|
[17438] | 839 | sp = new ScatterPlot() {
|
---|
| 840 | VisualProperties = {
|
---|
| 841 | XAxisMinimumAuto = false, XAxisMinimumFixedValue = 0d, XAxisMaximumAuto = false, XAxisMaximumFixedValue = 1d,
|
---|
| 842 | YAxisMinimumAuto = false, YAxisMinimumFixedValue = 0d, YAxisMaximumAuto = false, YAxisMaximumFixedValue = 1d
|
---|
| 843 | }
|
---|
| 844 | };
|
---|
| 845 | sp.Rows.Add(new ScatterPlotDataRow("Pareto Front", "", points) { VisualProperties = visualProperties });
|
---|
| 846 | sp.Rows.Add(new ScatterPlotDataRow($"Pareto Front [{c[0]}, {c[1]}]", "", pf2dPoints) { VisualProperties = { PointSize = 10, Color = Color.OrangeRed } });
|
---|
[17479] | 847 | innerResults.AddOrUpdateResult(resultName, sp);
|
---|
[17438] | 848 | }
|
---|
| 849 | else {
|
---|
[17479] | 850 | sp = (ScatterPlot)innerResults[resultName].Value;
|
---|
[17438] | 851 | sp.Rows["Pareto Front"].Points.Replace(points);
|
---|
| 852 | sp.Rows[$"Pareto Front [{c[0]}, {c[1]}]"].Points.Replace(pf2dPoints);
|
---|
| 853 | }
|
---|
| 854 | var r = OnlinePearsonsRCalculator.Calculate(points.Select(x => x.X), points.Select(x => x.Y), out OnlineCalculatorError error);
|
---|
| 855 | var r2 = r * r;
|
---|
| 856 | sp.Name = $"Pareto Front [{c[0]}, {c[1]}], correlation: {r2.ToString("N2")}";
|
---|
| 857 | }
|
---|
| 858 | }
|
---|
| 859 | hypervolumes.RowNames = elementNames;
|
---|
[17479] | 860 | innerResults.AddOrUpdateResult("Hypervolumes", hypervolumes);
|
---|
| 861 |
|
---|
| 862 | return results;
|
---|
[17438] | 863 | }
|
---|
| 864 |
|
---|
| 865 | #region operator wiring and events
|
---|
| 866 | protected void ExecuteOperation(ExecutionContext executionContext, CancellationToken cancellationToken, IOperation operation) {
|
---|
| 867 | Stack<IOperation> executionStack = new Stack<IOperation>();
|
---|
| 868 | executionStack.Push(operation);
|
---|
| 869 | while (executionStack.Count > 0) {
|
---|
| 870 | cancellationToken.ThrowIfCancellationRequested();
|
---|
| 871 | IOperation next = executionStack.Pop();
|
---|
| 872 | if (next is OperationCollection) {
|
---|
| 873 | OperationCollection coll = (OperationCollection)next;
|
---|
| 874 | for (int i = coll.Count - 1; i >= 0; i--)
|
---|
| 875 | if (coll[i] != null) executionStack.Push(coll[i]);
|
---|
| 876 | }
|
---|
| 877 | else if (next is IAtomicOperation) {
|
---|
| 878 | IAtomicOperation op = (IAtomicOperation)next;
|
---|
| 879 | next = op.Operator.Execute((IExecutionContext)op, cancellationToken);
|
---|
| 880 | if (next != null) executionStack.Push(next);
|
---|
| 881 | }
|
---|
| 882 | }
|
---|
| 883 | }
|
---|
| 884 |
|
---|
| 885 | protected virtual void UpdateAnalyzers() {
|
---|
| 886 | Analyzer.Operators.Clear();
|
---|
| 887 | if (Problem != null) {
|
---|
| 888 | foreach (IAnalyzer analyzer in Problem.Operators.OfType<IAnalyzer>()) {
|
---|
| 889 | foreach (IScopeTreeLookupParameter param in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
|
---|
| 890 | param.Depth = 1;
|
---|
| 891 | Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
|
---|
| 892 | }
|
---|
| 893 | }
|
---|
| 894 | }
|
---|
| 895 |
|
---|
| 896 | private void UpdateCrossovers() {
|
---|
| 897 | ICrossover oldCrossover = CrossoverParameter.Value;
|
---|
| 898 | CrossoverParameter.ValidValues.Clear();
|
---|
| 899 | ICrossover defaultCrossover = Problem.Operators.OfType<ICrossover>().FirstOrDefault();
|
---|
| 900 |
|
---|
| 901 | foreach (ICrossover crossover in Problem.Operators.OfType<ICrossover>().OrderBy(x => x.Name))
|
---|
| 902 | CrossoverParameter.ValidValues.Add(crossover);
|
---|
| 903 |
|
---|
| 904 | if (oldCrossover != null) {
|
---|
| 905 | ICrossover crossover = CrossoverParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldCrossover.GetType());
|
---|
| 906 | if (crossover != null) CrossoverParameter.Value = crossover;
|
---|
| 907 | else oldCrossover = null;
|
---|
| 908 | }
|
---|
| 909 | if (oldCrossover == null && defaultCrossover != null)
|
---|
| 910 | CrossoverParameter.Value = defaultCrossover;
|
---|
| 911 | }
|
---|
| 912 |
|
---|
| 913 | private void UpdateMutators() {
|
---|
| 914 | IManipulator oldMutator = MutatorParameter.Value;
|
---|
| 915 | MutatorParameter.ValidValues.Clear();
|
---|
| 916 | IManipulator defaultMutator = Problem.Operators.OfType<IManipulator>().FirstOrDefault();
|
---|
| 917 |
|
---|
| 918 | foreach (IManipulator mutator in Problem.Operators.OfType<IManipulator>().OrderBy(x => x.Name))
|
---|
| 919 | MutatorParameter.ValidValues.Add(mutator);
|
---|
| 920 |
|
---|
| 921 | if (oldMutator != null) {
|
---|
| 922 | IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType());
|
---|
| 923 | if (mutator != null) MutatorParameter.Value = mutator;
|
---|
| 924 | else oldMutator = null;
|
---|
| 925 | }
|
---|
| 926 |
|
---|
| 927 | if (oldMutator == null && defaultMutator != null)
|
---|
| 928 | MutatorParameter.Value = defaultMutator;
|
---|
| 929 | }
|
---|
| 930 |
|
---|
| 931 | protected override void OnProblemChanged() {
|
---|
| 932 | UpdateCrossovers();
|
---|
| 933 | UpdateMutators();
|
---|
| 934 | UpdateAnalyzers();
|
---|
| 935 | base.OnProblemChanged();
|
---|
| 936 | }
|
---|
| 937 |
|
---|
| 938 | protected override void OnExecutionStateChanged() {
|
---|
| 939 | previousExecutionState = executionState;
|
---|
| 940 | executionState = ExecutionState;
|
---|
| 941 | base.OnExecutionStateChanged();
|
---|
| 942 | }
|
---|
| 943 |
|
---|
| 944 | public void ClearState() {
|
---|
| 945 | solutions = null;
|
---|
| 946 | population = null;
|
---|
| 947 | offspringPopulation = null;
|
---|
| 948 | //jointPopulation = null;
|
---|
| 949 | lambda_moead = null;
|
---|
| 950 | neighbourhood = null;
|
---|
| 951 | if (executionContext != null && executionContext.Scope != null) {
|
---|
| 952 | executionContext.Scope.SubScopes.Clear();
|
---|
| 953 | }
|
---|
| 954 | }
|
---|
| 955 |
|
---|
| 956 | protected override void OnStopped() {
|
---|
| 957 | ClearState();
|
---|
| 958 | base.OnStopped();
|
---|
| 959 | }
|
---|
| 960 | #endregion
|
---|
| 961 | }
|
---|
| 962 | }
|
---|