1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Author: Kaifeng Yang
|
---|
4 | *
|
---|
5 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
6 | *
|
---|
7 | * This file is part of HeuristicLab.
|
---|
8 | *\
|
---|
9 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
10 | * it under the terms of the GNU General Public License as published by
|
---|
11 | * the Free Software Foundation, either version 3 of the License, or
|
---|
12 | * (at your option) any later version.
|
---|
13 | *
|
---|
14 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
17 | * GNU General Public License for more details.
|
---|
18 | *
|
---|
19 | * You should have received a copy of the GNU General Public License
|
---|
20 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
21 | */
|
---|
22 |
|
---|
23 | // SMS-EMOA
|
---|
24 | /*
|
---|
25 | Implemenetation of a real-coded SMS_EMOA algorithm.
|
---|
26 | This implementation follows the description of: 'M. Emmerich, N. Beume, and B. Naujoks.
|
---|
27 | An EMO Algorithm Using the Hypervolume Measure as Selection Criterion.EMO 2005.'
|
---|
28 | */
|
---|
29 | #endregion
|
---|
30 |
|
---|
31 | using HEAL.Attic;
|
---|
32 | using HeuristicLab.Common;
|
---|
33 | using HeuristicLab.Core;
|
---|
34 | using HeuristicLab.Data;
|
---|
35 | using HeuristicLab.Random;
|
---|
36 | using System.Linq;
|
---|
37 | using System;
|
---|
38 | using CancellationToken = System.Threading.CancellationToken;
|
---|
39 | using HeuristicLab.Analysis;
|
---|
40 | using HeuristicLab.Problems.TestFunctions.MultiObjective;
|
---|
41 | using HeuristicLab.Optimization;
|
---|
42 | using System.Collections.Generic;
|
---|
43 |
|
---|
44 |
|
---|
45 | /* This algorithm is SMS-EMOA implementation on HL. The main structure and interfaces with HL are copied from MOEA/D on HL, which was written by Dr. Bogdan Burlacu. The S-metric selection operator was adapted from Kaifeng's MATLAB toolbox in SMS-EMOA. The computational complexity of HVC is AT LEAST $O (n^2 \log n)$ in 2-D and 3-D cases. HVC should definitely be reduced to $\Theta (n \times \log n)$.
|
---|
46 | *
|
---|
47 | * This algorithm assumes:
|
---|
48 | * 1. minimization problems. For maximization problems, it is better to add "-" symbol.
|
---|
49 | *
|
---|
50 | * This algorithm works on:
|
---|
51 | * 1. continuous, discrete, mixed-integer MOO problems. For different types of problems, the operators should be adjusted accordingly.
|
---|
52 | * 2. both multi-objective and many-objective problems. For many-objective problems, the bottleneck is the computational complexity of HV.
|
---|
53 | *
|
---|
54 | * This algorithm is the basic implementation of SMS-EMOA, proposed by Michael Emmerich et. al. Some potential improvements can be:
|
---|
55 | * 1. Dynamic reference point strategy
|
---|
56 | * 2. Normalized fitness value strategy ---- desirability function. See, Yali, Longmei, Kaifeng, Michael Emmerich CEC paper.
|
---|
57 | * 3. HVC calculation should definitely be improved, at least in the 2D and 3D cases.
|
---|
58 | * 4. multiple point strategy when $\lambda>1$
|
---|
59 | * 5. multiple reference points strategy, in ICNC 2016, Zhiwei Yang et. al.
|
---|
60 | * 6. HVC approximation by R2 for MANY OBJECTIVE cases, by Ishibushi 2019, IEEE TEC
|
---|
61 | * 7. Maybe: See maps
|
---|
62 | *
|
---|
63 | * Global parameters:
|
---|
64 | * 1. population
|
---|
65 | *
|
---|
66 | * Many thanks for Bogdan Burlacu and Johannes Karder, especially Bogdan for his explanation, help, and supports.
|
---|
67 | */
|
---|
68 |
|
---|
69 | namespace HeuristicLab.Algorithms.DynamicALPS {
|
---|
70 | // Format:
|
---|
71 | // The indexed name of the algorithm/item, Description of the algorithm/item in HL
|
---|
72 | [Item("DynamicALPS-MainLoop", "DynamicALPS-MainLoop implementation adapted from SMS-EMOA in HL.")]
|
---|
73 |
|
---|
74 | // Call "HeuristicLab.Core"
|
---|
75 | // Define the category of this class.
|
---|
76 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 125)]
|
---|
77 |
|
---|
78 | // Call "HEAL.Attic"
|
---|
79 | // Define GUID for this Class
|
---|
80 | [StorableType("A7F33D16-3495-43E8-943C-8A919123F541")]
|
---|
81 |
|
---|
82 | public class DynamicALPSAlgorithm : DynamicALPSAlgorithmBase {
|
---|
83 | public DynamicALPSAlgorithm() { }
|
---|
84 |
|
---|
85 | protected DynamicALPSAlgorithm(DynamicALPSAlgorithm original, Cloner cloner) : base(original, cloner) { }
|
---|
86 |
|
---|
87 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
88 | return new DynamicALPSAlgorithm(this, cloner);
|
---|
89 | }
|
---|
90 |
|
---|
91 | [StorableConstructor]
|
---|
92 | protected DynamicALPSAlgorithm(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
93 |
|
---|
94 | protected override void Run(CancellationToken cancellationToken) {
|
---|
95 | if (previousExecutionState != ExecutionState.Paused) { // Call "base" class, DynamicALPSAlgorithmBase
|
---|
96 | InitializeAlgorithm(cancellationToken);
|
---|
97 | }
|
---|
98 |
|
---|
99 |
|
---|
100 | var populationSize = PopulationSize.Value;
|
---|
101 | bool[] maximization = ((BoolArray)Problem.MaximizationParameter.ActualValue).CloneAsArray();
|
---|
102 |
|
---|
103 | var crossover = Crossover;
|
---|
104 | var crossoverProbability = CrossoverProbability.Value;
|
---|
105 | var mutator = Mutator;
|
---|
106 | var mutationProbability = MutationProbability.Value;
|
---|
107 | var evaluator = Problem.Evaluator;
|
---|
108 | var analyzer = Analyzer;
|
---|
109 | var rand = RandomParameter.Value;
|
---|
110 |
|
---|
111 |
|
---|
112 | var maximumEvaluatedSolutions = MaximumEvaluatedSolutions.Value;
|
---|
113 |
|
---|
114 |
|
---|
115 | int lambda = 1; // the size of offspring
|
---|
116 |
|
---|
117 |
|
---|
118 | int nLayerALPS = ALPSLayers.Value;
|
---|
119 | int counterLayerALPS = 0;
|
---|
120 |
|
---|
121 | // IMPROVE: ........
|
---|
122 | // 1 2 4 8 16 32 64 128 256 512
|
---|
123 | int[] ageGapArray = new int[] { 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240 };
|
---|
124 | int[] numberDiscard = new int[10];
|
---|
125 |
|
---|
126 |
|
---|
127 |
|
---|
128 | activeLayer = new bool[nLayerALPS];
|
---|
129 | layerCrossoverProbability = new double[nLayerALPS];
|
---|
130 | int[][] ageMatrix = new int[nLayerALPS][]; // layer * population size
|
---|
131 |
|
---|
132 |
|
---|
133 |
|
---|
134 | // cancellation token for the inner operations which should not be immediately cancelled
|
---|
135 | var innerToken = new CancellationToken();
|
---|
136 |
|
---|
137 |
|
---|
138 | // 12022020
|
---|
139 | layerPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
140 | layerOffspringPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
141 | layerJointPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
142 | layerDiscardPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
143 | layerDiscardIndivdual = new IDynamicALPSSolution[nLayerALPS];
|
---|
144 |
|
---|
145 |
|
---|
146 | layerPopulation[counterLayerALPS] = new IDynamicALPSSolution[populationSize];
|
---|
147 | // BUG: The size of offspring should vary in different layers!!!!
|
---|
148 | layerOffspringPopulation[counterLayerALPS] = new IDynamicALPSSolution[lambda];
|
---|
149 | // layerDiscardPopulation[counterLayerALPS] = new IDynamicALPSSolution[populationSize]; // for the previous version, is used to store the individuals whose age is older than the age gap
|
---|
150 | layerDiscardPopulation[counterLayerALPS] = new IDynamicALPSSolution[populationSize];
|
---|
151 | population.CopyTo(layerPopulation[counterLayerALPS], 0);
|
---|
152 |
|
---|
153 | activeLayer[counterLayerALPS] = true;
|
---|
154 | layerCrossoverProbability[counterLayerALPS] = 0;
|
---|
155 | var test = UseAverageAge.Value;
|
---|
156 | for (int i = 0; i < nLayerALPS; i++) {
|
---|
157 | if (i == 0) {
|
---|
158 | activeLayer[i] = true;
|
---|
159 | }
|
---|
160 | else { activeLayer[i] = false; }
|
---|
161 | numberDiscard[i] = 0;
|
---|
162 | layerCrossoverProbability[i] = CrossoverProbability.Value;
|
---|
163 | }
|
---|
164 | int bottomLayerIDX = 0;
|
---|
165 | int godScope = 0;
|
---|
166 | // Mainloop
|
---|
167 | while (evaluatedSolutions < maximumEvaluatedSolutions && !cancellationToken.IsCancellationRequested) {
|
---|
168 | for (int i = 0; i < nLayerALPS; i++) { // loop for every layer
|
---|
169 | int discardedIndividualIndex = 0;
|
---|
170 | var currentLayerIDX = i;
|
---|
171 | var nextLayerIDX = i + 1;
|
---|
172 | if (nextLayerIDX == nLayerALPS) {
|
---|
173 | nextLayerIDX = bottomLayerIDX;
|
---|
174 | godScope = 1;
|
---|
175 | }
|
---|
176 | else { godScope = 0; }
|
---|
177 |
|
---|
178 |
|
---|
179 | if (activeLayer[currentLayerIDX] == true) { // check the current layer is active or not.
|
---|
180 | evaluatedSolutions = SMSEMOA(populationSize, lambda, currentLayerIDX); // get the offspring -- layerJointPopulation
|
---|
181 | if (evaluatedSolutions >= maximumEvaluatedSolutions) { break; } // check evaluation budget
|
---|
182 | ageMatrix[currentLayerIDX] = layerJointPopulation[currentLayerIDX].Select(x => x.Age).ToArray(); // get age info of the current layer joint population
|
---|
183 | #region version 1: use average to initialize the layer population
|
---|
184 | if (UseAverageAge.Value == true) {
|
---|
185 | if (activeLayer[nextLayerIDX] == false) {// next layer is not active yet
|
---|
186 | if (ageMatrix[currentLayerIDX].Average() > ageGapArray[currentLayerIDX]) { // the next layer is initialized
|
---|
187 | InitializeLayer(nextLayerIDX, populationSize, lambda); // initilizae the layerPopulation for the next layer && ACTIVE FLAGE
|
---|
188 | layerJointPopulation[currentLayerIDX].CopyTo(layerJointPopulation[nextLayerIDX], 0);
|
---|
189 | SmetricSelection(lambda, nextLayerIDX); // layerpopulation is updated here,
|
---|
190 | }
|
---|
191 | else {// the next layer is not initialized
|
---|
192 | SmetricSelection(lambda, currentLayerIDX);
|
---|
193 | }
|
---|
194 | }
|
---|
195 | else { // next layer is active
|
---|
196 | if (activeLayer.All(x => x) && godScope == 1) { // all the layers are active and the current layer is the top layer, move the discarded individual from the top to bottom, and reset the age
|
---|
197 | SmetricSelection(lambda, currentLayerIDX);
|
---|
198 | layerPopulation[bottomLayerIDX].CopyTo(layerJointPopulation[bottomLayerIDX], 0);
|
---|
199 | layerDiscardIndivdual[currentLayerIDX].Age = 0;
|
---|
200 | layerJointPopulation[bottomLayerIDX][populationSize] = layerDiscardIndivdual[currentLayerIDX];
|
---|
201 | SmetricSelection(lambda, bottomLayerIDX);
|
---|
202 | }
|
---|
203 | else {
|
---|
204 | if (ageMatrix[currentLayerIDX].Max() > ageGapArray[currentLayerIDX]) { // moving
|
---|
205 | discardedIndividualIndex = ageMatrix[currentLayerIDX].ToList().IndexOf(ageMatrix[currentLayerIDX].Max());
|
---|
206 | layerPopulation[nextLayerIDX].CopyTo(layerJointPopulation[nextLayerIDX], 0);
|
---|
207 | layerJointPopulation[currentLayerIDX].Where((x, idx) => idx == discardedIndividualIndex).ToArray().CopyTo(layerJointPopulation[nextLayerIDX], populationSize);
|
---|
208 | SmetricSelection(lambda, nextLayerIDX); // AGE and HVC
|
---|
209 | layerJointPopulation[currentLayerIDX].Where((x, idx) => idx != discardedIndividualIndex).ToArray().CopyTo(layerPopulation[currentLayerIDX], 0); // dicard the individual in the current layer
|
---|
210 | }
|
---|
211 | else { // next layer is active, but the age is not mature.
|
---|
212 | SmetricSelection(lambda, currentLayerIDX);
|
---|
213 | }
|
---|
214 | }
|
---|
215 | }
|
---|
216 | #endregion
|
---|
217 | }
|
---|
218 | else {
|
---|
219 | #region version 2: use individual age to to initialize the next layer
|
---|
220 | if (ageMatrix[currentLayerIDX].Max() > ageGapArray[currentLayerIDX]) { // mature: moving
|
---|
221 | discardedIndividualIndex = ageMatrix[currentLayerIDX].ToList().IndexOf(ageMatrix[currentLayerIDX].Max()); // BUG when two individual has the same maximal age???? NOT POSSBILE IN SMS-EMOA
|
---|
222 | layerDiscardPopulation[currentLayerIDX][numberDiscard[currentLayerIDX]] = layerJointPopulation[currentLayerIDX][discardedIndividualIndex]; // move the individual to the next layer
|
---|
223 | layerJointPopulation[currentLayerIDX].Where((x, idx) => idx != discardedIndividualIndex).ToArray().CopyTo(layerPopulation[currentLayerIDX], 0); // discard the indivudal in the current layer
|
---|
224 | numberDiscard[currentLayerIDX] += 1;
|
---|
225 | if (activeLayer[nextLayerIDX] == false) { // next layer is not active // bug, if i == number of layer, out of range .
|
---|
226 | if (numberDiscard[currentLayerIDX] == populationSize) {
|
---|
227 | InitializeLayer(nextLayerIDX, populationSize, lambda); // initilizae the layerPopulation for the next layer && ACTIVE FLAGE
|
---|
228 | layerDiscardPopulation[currentLayerIDX].CopyTo(layerPopulation[nextLayerIDX], 0);
|
---|
229 | numberDiscard[currentLayerIDX] = 0;
|
---|
230 | }
|
---|
231 | else {
|
---|
232 | // number of matured individuals < population size in the next layer
|
---|
233 | }
|
---|
234 | }
|
---|
235 | else { // next layer is active
|
---|
236 | layerPopulation[nextLayerIDX].CopyTo(layerJointPopulation[nextLayerIDX], 0);
|
---|
237 | layerJointPopulation[currentLayerIDX].Where((x, idx) => idx == discardedIndividualIndex).ToArray().CopyTo(layerJointPopulation[nextLayerIDX], populationSize);
|
---|
238 | SmetricSelection(lambda, nextLayerIDX); // AGE and HVC
|
---|
239 | numberDiscard[currentLayerIDX] = 0;
|
---|
240 | }
|
---|
241 | }
|
---|
242 | layerPopulation[currentLayerIDX].CopyTo(population, 0); // BUG: should copy all the active layers to population.
|
---|
243 | #endregion
|
---|
244 | }
|
---|
245 | }
|
---|
246 | else {
|
---|
247 | // Some thing wrong? lol nothing wrong here ^_^
|
---|
248 | }
|
---|
249 |
|
---|
250 |
|
---|
251 | }
|
---|
252 |
|
---|
253 |
|
---|
254 |
|
---|
255 |
|
---|
256 | int numberOfActiveLayer = activeLayer.Where(c => c).Count();
|
---|
257 | population = new IDynamicALPSSolution[populationSize * numberOfActiveLayer];
|
---|
258 | for (int i = 0; i < numberOfActiveLayer; i++) {
|
---|
259 | layerPopulation[i].CopyTo(population, i * populationSize);
|
---|
260 | }
|
---|
261 |
|
---|
262 |
|
---|
263 | // run analyzer
|
---|
264 | var analyze = executionContext.CreateChildOperation(analyzer, globalScope);
|
---|
265 | ExecuteOperation(executionContext, innerToken, analyze);
|
---|
266 | // update Pareto-front approximation sets
|
---|
267 | // UpdateParetoFronts();
|
---|
268 | // Show some results in the GUI.
|
---|
269 | Results.AddOrUpdateResult("IdealPoint", new DoubleArray(IdealPoint));
|
---|
270 | Results.AddOrUpdateResult("NadirPoint", new DoubleArray(NadirPoint));
|
---|
271 | Results.AddOrUpdateResult("Evaluated Solutions", new IntValue(evaluatedSolutions));
|
---|
272 |
|
---|
273 |
|
---|
274 |
|
---|
275 |
|
---|
276 |
|
---|
277 |
|
---|
278 | // see if we already have a result collection for the layer results, and reuse that one
|
---|
279 | ResultCollection allLayerResults;
|
---|
280 | if (Results.TryGetValue("LayerResults", out IResult allLayerResultsResult)) {
|
---|
281 | allLayerResults = (ResultCollection)allLayerResultsResult.Value;
|
---|
282 | }
|
---|
283 | else {
|
---|
284 | allLayerResults = new ResultCollection();
|
---|
285 | Results.AddOrUpdateResult("LayerResults", allLayerResults);
|
---|
286 | }
|
---|
287 |
|
---|
288 |
|
---|
289 |
|
---|
290 |
|
---|
291 |
|
---|
292 | // run layer analyzers
|
---|
293 | for (int i = 0; i < activeLayer.Length; ++i) {
|
---|
294 | if (!activeLayer[i]) continue;
|
---|
295 | var scope = new Scope($"Layer {i}");
|
---|
296 | var layer = layerPopulation[i];
|
---|
297 | var tmp = UpdateParetoFronts(layer, IdealPoint);
|
---|
298 |
|
---|
299 | // update the results in a way that avoids creating a new result collection at each iteration
|
---|
300 | if (allLayerResults.TryGetValue(scope.Name, out IResult lRes)) {
|
---|
301 | var lr = (ResultCollection)lRes.Value;
|
---|
302 | foreach (var result in tmp) {
|
---|
303 | lr.AddOrUpdateResult(result.Name, result.Value);
|
---|
304 | }
|
---|
305 | }
|
---|
306 | else {
|
---|
307 | allLayerResults.AddOrUpdateResult(scope.Name, tmp);
|
---|
308 | }
|
---|
309 |
|
---|
310 | var layerResults = (ResultCollection)allLayerResults[scope.Name].Value;
|
---|
311 |
|
---|
312 | //var layerQualities = new ItemArray<DoubleArray>(layer.Select(x => new DoubleArray(x.Qualities)));
|
---|
313 | // var layerSolutions = new ItemArray<IItem>(layer.Select(x => (IItem)x.Individual.Clone()));
|
---|
314 |
|
---|
315 | // only store the decision vectors
|
---|
316 | var layerSolutions = new ItemArray<IItem>(layer.Select(x => (IItem)((IScope)x.Individual).Variables["RealVector"].Value.Clone()));
|
---|
317 |
|
---|
318 | var layerAges = new ItemArray<IntValue>(layer.Select(x => new IntValue(x.Age)));
|
---|
319 | //layerResults.AddOrUpdateResult("Objective values", layerQualities);
|
---|
320 | layerResults.AddOrUpdateResult("Decision vectors", layerSolutions);
|
---|
321 | layerResults.AddOrUpdateResult("Age", layerAges);
|
---|
322 |
|
---|
323 | var tableObjectives = new DataTable("Objective values");
|
---|
324 | for (int j = 0; j < IdealPoint.Length; ++j) {
|
---|
325 | var row = new DataRow($"Objective {j + 1}");
|
---|
326 | row.Values.AddRange(layer.Select(x => x.Qualities[j]));
|
---|
327 | tableObjectives.Rows.Add(row);
|
---|
328 | }
|
---|
329 | layerResults.AddOrUpdateResult("Objective values", tableObjectives);
|
---|
330 |
|
---|
331 |
|
---|
332 | // historical HV
|
---|
333 | DataTable hyperVolumeHistory;
|
---|
334 | if (layerResults.TryGetValue("Layer Hypervolume History", out IResult res)) {
|
---|
335 | hyperVolumeHistory = (DataTable)res.Value;
|
---|
336 | }
|
---|
337 | else {
|
---|
338 | hyperVolumeHistory = new DataTable("Layer Hypervolume History");
|
---|
339 | var hrow = new DataRow($"Layer {i}");
|
---|
340 | hrow.VisualProperties = new DataRowVisualProperties {
|
---|
341 | StartIndexZero = false,
|
---|
342 | };
|
---|
343 | hyperVolumeHistory.Rows.Add(hrow);
|
---|
344 | layerResults.AddOrUpdateResult("Layer Hypervolume History", hyperVolumeHistory);
|
---|
345 | }
|
---|
346 | //var front = layer.Select(x => x.Qualities);
|
---|
347 | var reference = ReferencePoint.ToArray();
|
---|
348 | //var hv = double.MinValue;
|
---|
349 |
|
---|
350 | var layerQualities = layer.Select(x => x.Qualities).ToArray();
|
---|
351 | var layerPF = DominationCalculator<IDynamicALPSSolution>.CalculateBestParetoFront(layer, layerQualities, maximization);
|
---|
352 | var nondominatedLayer = NonDominatedSelect.GetDominatingVectors(layerPF.Select(x => x.Item2), reference, maximization, false);
|
---|
353 | var layerHV = nondominatedLayer.Any() ? Hypervolume.Calculate(nondominatedLayer, reference, maximization) : 0;
|
---|
354 | hyperVolumeHistory.Rows[$"Layer {i}"].Values.Add(layerHV);
|
---|
355 |
|
---|
356 |
|
---|
357 | // historical crossover probability
|
---|
358 | DataTable crossoverProbabilityHistory;
|
---|
359 | if (layerResults.TryGetValue("CrossoverProbability History", out IResult resPm)) {
|
---|
360 | crossoverProbabilityHistory = (DataTable)resPm.Value;
|
---|
361 | }
|
---|
362 | else {
|
---|
363 | crossoverProbabilityHistory = new DataTable("CrossoverProbability History");
|
---|
364 | var hrowPm = new DataRow($"Layer {i}");
|
---|
365 | hrowPm.VisualProperties = new DataRowVisualProperties {
|
---|
366 | StartIndexZero = false,
|
---|
367 | };
|
---|
368 | crossoverProbabilityHistory.Rows.Add(hrowPm);
|
---|
369 | layerResults.AddOrUpdateResult("CrossoverProbability History", crossoverProbabilityHistory);
|
---|
370 | }
|
---|
371 | crossoverProbabilityHistory.Rows[$"Layer {i}"].Values.Add(layerCrossoverProbability[i]);
|
---|
372 |
|
---|
373 |
|
---|
374 |
|
---|
375 | if (i == 1) {
|
---|
376 | DataTable wholeLayerHypervolumeHistrory;
|
---|
377 | var qualities = population.Select(x => x.Qualities).ToArray();
|
---|
378 | var pf = DominationCalculator<IDynamicALPSSolution>.CalculateBestParetoFront(population, qualities, maximization);
|
---|
379 | var nondominatedWhole = NonDominatedSelect.GetDominatingVectors(pf.Select(x => x.Item2), reference, maximization, false);
|
---|
380 | var hvWhole = nondominatedWhole.Any() ? Hypervolume.Calculate(nondominatedWhole, reference, maximization) : 0;
|
---|
381 | if (layerResults.TryGetValue("Hypervolume of the entire layers -- History", out IResult resHVWhole)) {
|
---|
382 | wholeLayerHypervolumeHistrory = (DataTable)resHVWhole.Value;
|
---|
383 | }
|
---|
384 | else {
|
---|
385 | wholeLayerHypervolumeHistrory = new DataTable("Hypervolume of the entire layers -- History");
|
---|
386 | var hrowWhole = new DataRow($"Layer {i}");
|
---|
387 | hrowWhole.VisualProperties = new DataRowVisualProperties {
|
---|
388 | StartIndexZero = false,
|
---|
389 | };
|
---|
390 | wholeLayerHypervolumeHistrory.Rows.Add(hrowWhole);
|
---|
391 | layerResults.AddOrUpdateResult("Hypervolume of the entire layers -- History", wholeLayerHypervolumeHistrory);
|
---|
392 | }
|
---|
393 | wholeLayerHypervolumeHistrory.Rows[$"Layer {i}"].Values.Add(hvWhole);
|
---|
394 | }
|
---|
395 | else {
|
---|
396 | }
|
---|
397 |
|
---|
398 | }
|
---|
399 |
|
---|
400 | // Update globalScope
|
---|
401 | globalScope.SubScopes.Replace(population.Select(x => (IScope)x.Individual));
|
---|
402 | }
|
---|
403 | }
|
---|
404 | }
|
---|
405 | }
|
---|