[17438] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Author: Kaifeng Yang
|
---|
| 4 | *
|
---|
| 5 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 6 | *
|
---|
| 7 | * This file is part of HeuristicLab.
|
---|
| 8 | *\
|
---|
| 9 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 10 | * it under the terms of the GNU General Public License as published by
|
---|
| 11 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 12 | * (at your option) any later version.
|
---|
| 13 | *
|
---|
| 14 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 17 | * GNU General Public License for more details.
|
---|
| 18 | *
|
---|
| 19 | * You should have received a copy of the GNU General Public License
|
---|
| 20 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 21 | */
|
---|
| 22 |
|
---|
| 23 | // SMS-EMOA
|
---|
| 24 | /*
|
---|
| 25 | Implemenetation of a real-coded SMS_EMOA algorithm.
|
---|
| 26 | This implementation follows the description of: 'M. Emmerich, N. Beume, and B. Naujoks.
|
---|
| 27 | An EMO Algorithm Using the Hypervolume Measure as Selection Criterion.EMO 2005.'
|
---|
| 28 | */
|
---|
| 29 | #endregion
|
---|
| 30 |
|
---|
| 31 | using HEAL.Attic;
|
---|
| 32 | using HeuristicLab.Common;
|
---|
| 33 | using HeuristicLab.Core;
|
---|
| 34 | using HeuristicLab.Data;
|
---|
| 35 | using HeuristicLab.Random;
|
---|
| 36 | using System.Linq;
|
---|
| 37 | using System;
|
---|
| 38 | using CancellationToken = System.Threading.CancellationToken;
|
---|
| 39 | using HeuristicLab.Analysis;
|
---|
| 40 | using HeuristicLab.Problems.TestFunctions.MultiObjective;
|
---|
| 41 | using HeuristicLab.Optimization;
|
---|
| 42 | using System.Collections.Generic;
|
---|
| 43 |
|
---|
| 44 |
|
---|
| 45 | /* This algorithm is SMS-EMOA implementation on HL. The main structure and interfaces with HL are copied from MOEA/D on HL, which was written by Dr. Bogdan Burlacu. The S-metric selection operator was adapted from Kaifeng's MATLAB toolbox in SMS-EMOA. The computational complexity of HVC is AT LEAST $O (n^2 \log n)$ in 2-D and 3-D cases. HVC should definitely be reduced to $\Theta (n \times \log n)$.
|
---|
| 46 | *
|
---|
| 47 | * This algorithm assumes:
|
---|
| 48 | * 1. minimization problems. For maximization problems, it is better to add "-" symbol.
|
---|
| 49 | *
|
---|
| 50 | * This algorithm works on:
|
---|
| 51 | * 1. continuous, discrete, mixed-integer MOO problems. For different types of problems, the operators should be adjusted accordingly.
|
---|
| 52 | * 2. both multi-objective and many-objective problems. For many-objective problems, the bottleneck is the computational complexity of HV.
|
---|
| 53 | *
|
---|
| 54 | * This algorithm is the basic implementation of SMS-EMOA, proposed by Michael Emmerich et. al. Some potential improvements can be:
|
---|
| 55 | * 1. Dynamic reference point strategy
|
---|
| 56 | * 2. Normalized fitness value strategy ---- desirability function. See, Yali, Longmei, Kaifeng, Michael Emmerich CEC paper.
|
---|
| 57 | * 3. HVC calculation should definitely be improved, at least in the 2D and 3D cases.
|
---|
| 58 | * 4. multiple point strategy when $\lambda>1$
|
---|
| 59 | * 5. multiple reference points strategy, in ICNC 2016, Zhiwei Yang et. al.
|
---|
| 60 | * 6. HVC approximation by R2 for MANY OBJECTIVE cases, by Ishibushi 2019, IEEE TEC
|
---|
| 61 | * 7. Maybe: See maps
|
---|
| 62 | *
|
---|
| 63 | * Global parameters:
|
---|
| 64 | * 1. population
|
---|
| 65 | *
|
---|
| 66 | * Many thanks for Bogdan Burlacu and Johannes Karder, especially Bogdan for his explanation, help, and supports.
|
---|
| 67 | */
|
---|
| 68 |
|
---|
| 69 | namespace HeuristicLab.Algorithms.DynamicALPS {
|
---|
| 70 | // Format:
|
---|
| 71 | // The indexed name of the algorithm/item, Description of the algorithm/item in HL
|
---|
| 72 | [Item("DynamicALPS-MainLoop", "DynamicALPS-MainLoop implementation adapted from SMS-EMOA in HL.")]
|
---|
| 73 |
|
---|
| 74 | // Call "HeuristicLab.Core"
|
---|
| 75 | // Define the category of this class.
|
---|
| 76 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 125)]
|
---|
| 77 |
|
---|
| 78 | // Call "HEAL.Attic"
|
---|
| 79 | // Define GUID for this Class
|
---|
| 80 | [StorableType("A7F33D16-3495-43E8-943C-8A919123F541")]
|
---|
| 81 |
|
---|
| 82 | public class DynamicALPSAlgorithm : DynamicALPSAlgorithmBase {
|
---|
| 83 | public DynamicALPSAlgorithm() { }
|
---|
| 84 |
|
---|
| 85 | protected DynamicALPSAlgorithm(DynamicALPSAlgorithm original, Cloner cloner) : base(original, cloner) { }
|
---|
| 86 |
|
---|
| 87 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 88 | return new DynamicALPSAlgorithm(this, cloner);
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | [StorableConstructor]
|
---|
| 92 | protected DynamicALPSAlgorithm(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
| 93 |
|
---|
| 94 | protected override void Run(CancellationToken cancellationToken) {
|
---|
| 95 | if (previousExecutionState != ExecutionState.Paused) { // Call "base" class, DynamicALPSAlgorithmBase
|
---|
| 96 | InitializeAlgorithm(cancellationToken);
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 |
|
---|
| 100 | var populationSize = PopulationSize.Value;
|
---|
| 101 | bool[] maximization = ((BoolArray)Problem.MaximizationParameter.ActualValue).CloneAsArray();
|
---|
| 102 |
|
---|
| 103 | var crossover = Crossover;
|
---|
| 104 | var crossoverProbability = CrossoverProbability.Value;
|
---|
| 105 | var mutator = Mutator;
|
---|
| 106 | var mutationProbability = MutationProbability.Value;
|
---|
| 107 | var evaluator = Problem.Evaluator;
|
---|
| 108 | var analyzer = Analyzer;
|
---|
| 109 | var rand = RandomParameter.Value;
|
---|
| 110 |
|
---|
| 111 |
|
---|
| 112 | var maximumEvaluatedSolutions = MaximumEvaluatedSolutions.Value;
|
---|
| 113 |
|
---|
| 114 |
|
---|
| 115 | int lambda = 1; // the size of offspring
|
---|
| 116 |
|
---|
| 117 |
|
---|
| 118 | int nLayerALPS = ALPSLayers.Value;
|
---|
| 119 | int counterLayerALPS = 0;
|
---|
| 120 |
|
---|
| 121 | // IMPROVE: ........
|
---|
[17479] | 122 | // 1 2 4 8 16 32 64 128 256 512
|
---|
| 123 | int[] ageGapArray = new int[] { 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240 };
|
---|
[17438] | 124 | int[] numberDiscard = new int[10];
|
---|
| 125 |
|
---|
| 126 |
|
---|
| 127 |
|
---|
| 128 | activeLayer = new bool[nLayerALPS];
|
---|
[17479] | 129 | layerCrossoverProbability = new double[nLayerALPS];
|
---|
[17438] | 130 | int[][] ageMatrix = new int[nLayerALPS][]; // layer * population size
|
---|
| 131 |
|
---|
| 132 |
|
---|
| 133 |
|
---|
| 134 | // cancellation token for the inner operations which should not be immediately cancelled
|
---|
| 135 | var innerToken = new CancellationToken();
|
---|
| 136 |
|
---|
| 137 |
|
---|
| 138 | // 12022020
|
---|
| 139 | layerPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
| 140 | layerOffspringPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
| 141 | layerJointPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
| 142 | layerDiscardPopulation = new IDynamicALPSSolution[nLayerALPS][];
|
---|
[17479] | 143 | layerDiscardIndivdual = new IDynamicALPSSolution[nLayerALPS];
|
---|
[17438] | 144 |
|
---|
| 145 |
|
---|
| 146 | layerPopulation[counterLayerALPS] = new IDynamicALPSSolution[populationSize];
|
---|
| 147 | // BUG: The size of offspring should vary in different layers!!!!
|
---|
| 148 | layerOffspringPopulation[counterLayerALPS] = new IDynamicALPSSolution[lambda];
|
---|
[17479] | 149 | // layerDiscardPopulation[counterLayerALPS] = new IDynamicALPSSolution[populationSize]; // for the previous version, is used to store the individuals whose age is older than the age gap
|
---|
[17438] | 150 | layerDiscardPopulation[counterLayerALPS] = new IDynamicALPSSolution[populationSize];
|
---|
| 151 | population.CopyTo(layerPopulation[counterLayerALPS], 0);
|
---|
| 152 |
|
---|
| 153 | activeLayer[counterLayerALPS] = true;
|
---|
[17479] | 154 | layerCrossoverProbability[counterLayerALPS] = 0;
|
---|
| 155 | var test = UseAverageAge.Value;
|
---|
[17438] | 156 | for (int i = 0; i < nLayerALPS; i++) {
|
---|
| 157 | if (i == 0) {
|
---|
| 158 | activeLayer[i] = true;
|
---|
| 159 | }
|
---|
| 160 | else { activeLayer[i] = false; }
|
---|
| 161 | numberDiscard[i] = 0;
|
---|
[17479] | 162 | layerCrossoverProbability[i] = CrossoverProbability.Value;
|
---|
[17438] | 163 | }
|
---|
[17479] | 164 | int bottomLayerIDX = 0;
|
---|
| 165 | int godScope = 0;
|
---|
[17438] | 166 | // Mainloop
|
---|
| 167 | while (evaluatedSolutions < maximumEvaluatedSolutions && !cancellationToken.IsCancellationRequested) {
|
---|
| 168 | for (int i = 0; i < nLayerALPS; i++) { // loop for every layer
|
---|
| 169 | int discardedIndividualIndex = 0;
|
---|
[17479] | 170 | var currentLayerIDX = i;
|
---|
| 171 | var nextLayerIDX = i + 1;
|
---|
| 172 | if (nextLayerIDX == nLayerALPS) {
|
---|
| 173 | nextLayerIDX = bottomLayerIDX;
|
---|
| 174 | godScope = 1;
|
---|
| 175 | }
|
---|
| 176 | else { godScope = 0; }
|
---|
| 177 |
|
---|
| 178 |
|
---|
| 179 | if (activeLayer[currentLayerIDX] == true) { // check the current layer is active or not.
|
---|
| 180 | evaluatedSolutions = SMSEMOA(populationSize, lambda, currentLayerIDX); // get the offspring -- layerJointPopulation
|
---|
[17438] | 181 | if (evaluatedSolutions >= maximumEvaluatedSolutions) { break; } // check evaluation budget
|
---|
[17479] | 182 | ageMatrix[currentLayerIDX] = layerJointPopulation[currentLayerIDX].Select(x => x.Age).ToArray(); // get age info of the current layer joint population
|
---|
| 183 | #region version 1: use average to initialize the layer population
|
---|
| 184 | if (UseAverageAge.Value == true) {
|
---|
| 185 | if (activeLayer[nextLayerIDX] == false) {// next layer is not active yet
|
---|
| 186 | if (ageMatrix[currentLayerIDX].Average() > ageGapArray[currentLayerIDX]) { // the next layer is initialized
|
---|
| 187 | InitializeLayer(nextLayerIDX, populationSize, lambda); // initilizae the layerPopulation for the next layer && ACTIVE FLAGE
|
---|
| 188 | layerJointPopulation[currentLayerIDX].CopyTo(layerJointPopulation[nextLayerIDX], 0);
|
---|
| 189 | SmetricSelection(lambda, nextLayerIDX); // layerpopulation is updated here,
|
---|
[17438] | 190 | }
|
---|
[17479] | 191 | else {// the next layer is not initialized
|
---|
| 192 | SmetricSelection(lambda, currentLayerIDX);
|
---|
| 193 | }
|
---|
| 194 | }
|
---|
| 195 | else { // next layer is active
|
---|
| 196 | if (activeLayer.All(x => x) && godScope == 1) { // all the layers are active and the current layer is the top layer, move the discarded individual from the top to bottom, and reset the age
|
---|
| 197 | SmetricSelection(lambda, currentLayerIDX);
|
---|
| 198 | layerPopulation[bottomLayerIDX].CopyTo(layerJointPopulation[bottomLayerIDX], 0);
|
---|
| 199 | layerDiscardIndivdual[currentLayerIDX].Age = 0;
|
---|
| 200 | layerJointPopulation[bottomLayerIDX][populationSize] = layerDiscardIndivdual[currentLayerIDX];
|
---|
| 201 | SmetricSelection(lambda, bottomLayerIDX);
|
---|
| 202 | }
|
---|
[17438] | 203 | else {
|
---|
[17479] | 204 | if (ageMatrix[currentLayerIDX].Max() > ageGapArray[currentLayerIDX]) { // moving
|
---|
| 205 | discardedIndividualIndex = ageMatrix[currentLayerIDX].ToList().IndexOf(ageMatrix[currentLayerIDX].Max());
|
---|
| 206 | layerPopulation[nextLayerIDX].CopyTo(layerJointPopulation[nextLayerIDX], 0);
|
---|
| 207 | layerJointPopulation[currentLayerIDX].Where((x, idx) => idx == discardedIndividualIndex).ToArray().CopyTo(layerJointPopulation[nextLayerIDX], populationSize);
|
---|
| 208 | SmetricSelection(lambda, nextLayerIDX); // AGE and HVC
|
---|
| 209 | layerJointPopulation[currentLayerIDX].Where((x, idx) => idx != discardedIndividualIndex).ToArray().CopyTo(layerPopulation[currentLayerIDX], 0); // dicard the individual in the current layer
|
---|
| 210 | }
|
---|
| 211 | else { // next layer is active, but the age is not mature.
|
---|
| 212 | SmetricSelection(lambda, currentLayerIDX);
|
---|
| 213 | }
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 | #endregion
|
---|
| 217 | }
|
---|
| 218 | else {
|
---|
| 219 | #region version 2: use individual age to to initialize the next layer
|
---|
| 220 | if (ageMatrix[currentLayerIDX].Max() > ageGapArray[currentLayerIDX]) { // mature: moving
|
---|
| 221 | discardedIndividualIndex = ageMatrix[currentLayerIDX].ToList().IndexOf(ageMatrix[currentLayerIDX].Max()); // BUG when two individual has the same maximal age???? NOT POSSBILE IN SMS-EMOA
|
---|
| 222 | layerDiscardPopulation[currentLayerIDX][numberDiscard[currentLayerIDX]] = layerJointPopulation[currentLayerIDX][discardedIndividualIndex]; // move the individual to the next layer
|
---|
| 223 | layerJointPopulation[currentLayerIDX].Where((x, idx) => idx != discardedIndividualIndex).ToArray().CopyTo(layerPopulation[currentLayerIDX], 0); // discard the indivudal in the current layer
|
---|
| 224 | numberDiscard[currentLayerIDX] += 1;
|
---|
| 225 | if (activeLayer[nextLayerIDX] == false) { // next layer is not active // bug, if i == number of layer, out of range .
|
---|
| 226 | if (numberDiscard[currentLayerIDX] == populationSize) {
|
---|
| 227 | InitializeLayer(nextLayerIDX, populationSize, lambda); // initilizae the layerPopulation for the next layer && ACTIVE FLAGE
|
---|
| 228 | layerDiscardPopulation[currentLayerIDX].CopyTo(layerPopulation[nextLayerIDX], 0);
|
---|
| 229 | numberDiscard[currentLayerIDX] = 0;
|
---|
| 230 | }
|
---|
| 231 | else {
|
---|
[17438] | 232 | // number of matured individuals < population size in the next layer
|
---|
| 233 | }
|
---|
| 234 | }
|
---|
| 235 | else { // next layer is active
|
---|
[17479] | 236 | layerPopulation[nextLayerIDX].CopyTo(layerJointPopulation[nextLayerIDX], 0);
|
---|
| 237 | layerJointPopulation[currentLayerIDX].Where((x, idx) => idx == discardedIndividualIndex).ToArray().CopyTo(layerJointPopulation[nextLayerIDX], populationSize);
|
---|
| 238 | SmetricSelection(lambda, nextLayerIDX); // AGE and HVC
|
---|
| 239 | numberDiscard[currentLayerIDX] = 0;
|
---|
[17438] | 240 | }
|
---|
| 241 | }
|
---|
[17479] | 242 | layerPopulation[currentLayerIDX].CopyTo(population, 0); // BUG: should copy all the active layers to population.
|
---|
| 243 | #endregion
|
---|
| 244 | }
|
---|
[17438] | 245 | }
|
---|
| 246 | else {
|
---|
| 247 | // Some thing wrong? lol nothing wrong here ^_^
|
---|
| 248 | }
|
---|
[17479] | 249 |
|
---|
| 250 |
|
---|
[17438] | 251 | }
|
---|
| 252 |
|
---|
| 253 |
|
---|
| 254 |
|
---|
[17479] | 255 |
|
---|
| 256 | int numberOfActiveLayer = activeLayer.Where(c => c).Count();
|
---|
| 257 | population = new IDynamicALPSSolution[populationSize * numberOfActiveLayer];
|
---|
| 258 | for (int i = 0; i < numberOfActiveLayer; i++) {
|
---|
| 259 | layerPopulation[i].CopyTo(population, i * populationSize);
|
---|
| 260 | }
|
---|
| 261 |
|
---|
| 262 |
|
---|
[17438] | 263 | // run analyzer
|
---|
| 264 | var analyze = executionContext.CreateChildOperation(analyzer, globalScope);
|
---|
| 265 | ExecuteOperation(executionContext, innerToken, analyze);
|
---|
| 266 | // update Pareto-front approximation sets
|
---|
[17479] | 267 | // UpdateParetoFronts();
|
---|
[17438] | 268 | // Show some results in the GUI.
|
---|
| 269 | Results.AddOrUpdateResult("IdealPoint", new DoubleArray(IdealPoint));
|
---|
| 270 | Results.AddOrUpdateResult("NadirPoint", new DoubleArray(NadirPoint));
|
---|
| 271 | Results.AddOrUpdateResult("Evaluated Solutions", new IntValue(evaluatedSolutions));
|
---|
| 272 |
|
---|
[17479] | 273 |
|
---|
| 274 |
|
---|
| 275 |
|
---|
| 276 |
|
---|
| 277 |
|
---|
| 278 | // see if we already have a result collection for the layer results, and reuse that one
|
---|
| 279 | ResultCollection allLayerResults;
|
---|
| 280 | if (Results.TryGetValue("LayerResults", out IResult allLayerResultsResult)) {
|
---|
| 281 | allLayerResults = (ResultCollection)allLayerResultsResult.Value;
|
---|
| 282 | }
|
---|
| 283 | else {
|
---|
| 284 | allLayerResults = new ResultCollection();
|
---|
| 285 | Results.AddOrUpdateResult("LayerResults", allLayerResults);
|
---|
| 286 | }
|
---|
| 287 |
|
---|
| 288 |
|
---|
| 289 |
|
---|
| 290 |
|
---|
| 291 |
|
---|
[17438] | 292 | // run layer analyzers
|
---|
| 293 | for (int i = 0; i < activeLayer.Length; ++i) {
|
---|
| 294 | if (!activeLayer[i]) continue;
|
---|
| 295 | var scope = new Scope($"Layer {i}");
|
---|
| 296 | var layer = layerPopulation[i];
|
---|
[17479] | 297 | var tmp = UpdateParetoFronts(layer, IdealPoint);
|
---|
[17438] | 298 |
|
---|
[17479] | 299 | // update the results in a way that avoids creating a new result collection at each iteration
|
---|
| 300 | if (allLayerResults.TryGetValue(scope.Name, out IResult lRes)) {
|
---|
| 301 | var lr = (ResultCollection)lRes.Value;
|
---|
| 302 | foreach (var result in tmp) {
|
---|
| 303 | lr.AddOrUpdateResult(result.Name, result.Value);
|
---|
| 304 | }
|
---|
| 305 | }
|
---|
| 306 | else {
|
---|
| 307 | allLayerResults.AddOrUpdateResult(scope.Name, tmp);
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 | var layerResults = (ResultCollection)allLayerResults[scope.Name].Value;
|
---|
| 311 |
|
---|
| 312 | //var layerQualities = new ItemArray<DoubleArray>(layer.Select(x => new DoubleArray(x.Qualities)));
|
---|
| 313 | // var layerSolutions = new ItemArray<IItem>(layer.Select(x => (IItem)x.Individual.Clone()));
|
---|
| 314 |
|
---|
| 315 | // only store the decision vectors
|
---|
| 316 | var layerSolutions = new ItemArray<IItem>(layer.Select(x => (IItem)((IScope)x.Individual).Variables["RealVector"].Value.Clone()));
|
---|
| 317 |
|
---|
| 318 | var layerAges = new ItemArray<IntValue>(layer.Select(x => new IntValue(x.Age)));
|
---|
| 319 | //layerResults.AddOrUpdateResult("Objective values", layerQualities);
|
---|
| 320 | layerResults.AddOrUpdateResult("Decision vectors", layerSolutions);
|
---|
| 321 | layerResults.AddOrUpdateResult("Age", layerAges);
|
---|
| 322 |
|
---|
| 323 | var tableObjectives = new DataTable("Objective values");
|
---|
| 324 | for (int j = 0; j < IdealPoint.Length; ++j) {
|
---|
| 325 | var row = new DataRow($"Objective {j + 1}");
|
---|
| 326 | row.Values.AddRange(layer.Select(x => x.Qualities[j]));
|
---|
| 327 | tableObjectives.Rows.Add(row);
|
---|
| 328 | }
|
---|
| 329 | layerResults.AddOrUpdateResult("Objective values", tableObjectives);
|
---|
| 330 |
|
---|
| 331 |
|
---|
| 332 | // historical HV
|
---|
| 333 | DataTable hyperVolumeHistory;
|
---|
| 334 | if (layerResults.TryGetValue("Layer Hypervolume History", out IResult res)) {
|
---|
| 335 | hyperVolumeHistory = (DataTable)res.Value;
|
---|
| 336 | }
|
---|
| 337 | else {
|
---|
| 338 | hyperVolumeHistory = new DataTable("Layer Hypervolume History");
|
---|
| 339 | var hrow = new DataRow($"Layer {i}");
|
---|
| 340 | hrow.VisualProperties = new DataRowVisualProperties {
|
---|
| 341 | StartIndexZero = false,
|
---|
| 342 | };
|
---|
| 343 | hyperVolumeHistory.Rows.Add(hrow);
|
---|
| 344 | layerResults.AddOrUpdateResult("Layer Hypervolume History", hyperVolumeHistory);
|
---|
| 345 | }
|
---|
| 346 | //var front = layer.Select(x => x.Qualities);
|
---|
| 347 | var reference = ReferencePoint.ToArray();
|
---|
| 348 | //var hv = double.MinValue;
|
---|
| 349 |
|
---|
| 350 | var layerQualities = layer.Select(x => x.Qualities).ToArray();
|
---|
| 351 | var layerPF = DominationCalculator<IDynamicALPSSolution>.CalculateBestParetoFront(layer, layerQualities, maximization);
|
---|
| 352 | var nondominatedLayer = NonDominatedSelect.GetDominatingVectors(layerPF.Select(x => x.Item2), reference, maximization, false);
|
---|
| 353 | var layerHV = nondominatedLayer.Any() ? Hypervolume.Calculate(nondominatedLayer, reference, maximization) : 0;
|
---|
| 354 | hyperVolumeHistory.Rows[$"Layer {i}"].Values.Add(layerHV);
|
---|
| 355 |
|
---|
| 356 |
|
---|
| 357 | // historical crossover probability
|
---|
| 358 | DataTable crossoverProbabilityHistory;
|
---|
| 359 | if (layerResults.TryGetValue("CrossoverProbability History", out IResult resPm)) {
|
---|
| 360 | crossoverProbabilityHistory = (DataTable)resPm.Value;
|
---|
| 361 | }
|
---|
| 362 | else {
|
---|
| 363 | crossoverProbabilityHistory = new DataTable("CrossoverProbability History");
|
---|
| 364 | var hrowPm = new DataRow($"Layer {i}");
|
---|
| 365 | hrowPm.VisualProperties = new DataRowVisualProperties {
|
---|
| 366 | StartIndexZero = false,
|
---|
| 367 | };
|
---|
| 368 | crossoverProbabilityHistory.Rows.Add(hrowPm);
|
---|
| 369 | layerResults.AddOrUpdateResult("CrossoverProbability History", crossoverProbabilityHistory);
|
---|
| 370 | }
|
---|
| 371 | crossoverProbabilityHistory.Rows[$"Layer {i}"].Values.Add(layerCrossoverProbability[i]);
|
---|
| 372 |
|
---|
| 373 |
|
---|
| 374 |
|
---|
| 375 | if (i == 1) {
|
---|
| 376 | DataTable wholeLayerHypervolumeHistrory;
|
---|
| 377 | var qualities = population.Select(x => x.Qualities).ToArray();
|
---|
| 378 | var pf = DominationCalculator<IDynamicALPSSolution>.CalculateBestParetoFront(population, qualities, maximization);
|
---|
| 379 | var nondominatedWhole = NonDominatedSelect.GetDominatingVectors(pf.Select(x => x.Item2), reference, maximization, false);
|
---|
| 380 | var hvWhole = nondominatedWhole.Any() ? Hypervolume.Calculate(nondominatedWhole, reference, maximization) : 0;
|
---|
| 381 | if (layerResults.TryGetValue("Hypervolume of the entire layers -- History", out IResult resHVWhole)) {
|
---|
| 382 | wholeLayerHypervolumeHistrory = (DataTable)resHVWhole.Value;
|
---|
| 383 | }
|
---|
| 384 | else {
|
---|
| 385 | wholeLayerHypervolumeHistrory = new DataTable("Hypervolume of the entire layers -- History");
|
---|
| 386 | var hrowWhole = new DataRow($"Layer {i}");
|
---|
| 387 | hrowWhole.VisualProperties = new DataRowVisualProperties {
|
---|
| 388 | StartIndexZero = false,
|
---|
| 389 | };
|
---|
| 390 | wholeLayerHypervolumeHistrory.Rows.Add(hrowWhole);
|
---|
| 391 | layerResults.AddOrUpdateResult("Hypervolume of the entire layers -- History", wholeLayerHypervolumeHistrory);
|
---|
| 392 | }
|
---|
| 393 | wholeLayerHypervolumeHistrory.Rows[$"Layer {i}"].Values.Add(hvWhole);
|
---|
| 394 | }
|
---|
| 395 | else {
|
---|
| 396 | }
|
---|
| 397 |
|
---|
[17438] | 398 | }
|
---|
| 399 |
|
---|
| 400 | // Update globalScope
|
---|
| 401 | globalScope.SubScopes.Replace(population.Select(x => (IScope)x.Individual));
|
---|
| 402 | }
|
---|
| 403 | }
|
---|
| 404 | }
|
---|
| 405 | }
|
---|