1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Author: Kaifeng Yang
|
---|
4 | *
|
---|
5 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
6 | *
|
---|
7 | * This file is part of HeuristicLab.
|
---|
8 | *
|
---|
9 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
10 | * it under the terms of the GNU General Public License as published by
|
---|
11 | * the Free Software Foundation, either version 3 of the License, or
|
---|
12 | * (at your option) any later version.
|
---|
13 | *
|
---|
14 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
17 | * GNU General Public License for more details.
|
---|
18 | *
|
---|
19 | * You should have received a copy of the GNU General Public License
|
---|
20 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
21 | */
|
---|
22 |
|
---|
23 | // SMS-EMOA
|
---|
24 | /*
|
---|
25 | Implemenetation of a real-coded SMS_EMOA algorithm.
|
---|
26 | This implementation follows the description of: 'M. Emmerich, N. Beume, and B. Naujoks.
|
---|
27 | An EMO Algorithm Using the Hypervolume Measure as Selection Criterion.EMO 2005.'
|
---|
28 | */
|
---|
29 | #endregion
|
---|
30 |
|
---|
31 | using HEAL.Attic;
|
---|
32 | using HeuristicLab.Common;
|
---|
33 | using HeuristicLab.Core;
|
---|
34 | using HeuristicLab.Data;
|
---|
35 | using HeuristicLab.Random;
|
---|
36 | using System.Linq;
|
---|
37 | using System;
|
---|
38 | using CancellationToken = System.Threading.CancellationToken;
|
---|
39 |
|
---|
40 |
|
---|
41 | /* This algorithm is SMS-EMOA implementation on HL. The main structure and interfaces with HL are copied from MOEA/D on HL, which was written by Dr. Bogdan Burlacu. The S-metric selection operator was adapted from Kaifeng's MATLAB toolbox in SMS-EMOA. The computational complexity of HVC is AT LEAST $O (n^2 \log n)$ in 2-D and 3-D cases. HVC should definitely be reduced to $\Theta (n \times \log n)$.
|
---|
42 | *
|
---|
43 | * This algorithm assumes:
|
---|
44 | * 1. minimization problems. For maximization problems, it is better to add "-" symbol.
|
---|
45 | *
|
---|
46 | * This algorithm works on:
|
---|
47 | * 1. continuous, discrete, mixed-integer MOO problems. For different types of problems, the operators should be adjusted accordingly.
|
---|
48 | * 2. both multi-objective and many-objective problems. For many-objective problems, the bottleneck is the computational complexity of HV.
|
---|
49 | *
|
---|
50 | * This algorithm is the basic implementation of SMS-EMOA, proposed by Michael Emmerich et. al. Some potential improvements can be:
|
---|
51 | * 1. Dynamic reference point strategy
|
---|
52 | * 2. Normalized fitness value strategy ---- desirability function. See, Yali, Longmei, Kaifeng, Michael Emmerich CEC paper.
|
---|
53 | * 3. HVC calculation should definitely be improved, at least in the 2D and 3D cases.
|
---|
54 | * 4. multiple point strategy when $\lambda>1$
|
---|
55 | * 5. multiple reference points strategy, in ICNC 2016, Zhiwei Yang et. al.
|
---|
56 | * 6. HVC approximation by R2 for MANY OBJECTIVE cases, by Ishibushi 2019, IEEE TEC
|
---|
57 | * 7. Maybe: See maps
|
---|
58 | *
|
---|
59 | * Global parameters:
|
---|
60 | * 1. population
|
---|
61 | *
|
---|
62 | * Many thanks for Bogdan Burlacu and Johannes Karder, especially Bogdan for his explanation, help, and supports.
|
---|
63 | */
|
---|
64 |
|
---|
65 | namespace HeuristicLab.Algorithms.SMSEMOA {
|
---|
66 | // Format:
|
---|
67 | // The indexed name of the algorithm/item, Description of the algorithm/item in HL
|
---|
68 | [Item("SMS-EMOA", "SMS-EMOA implementation adapted from MATLAB.")]
|
---|
69 |
|
---|
70 | // Call "HeuristicLab.Core"
|
---|
71 | // Define the category of this class.
|
---|
72 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 125)]
|
---|
73 |
|
---|
74 | // Call "HEAL.Attic"
|
---|
75 | // Define GUID for this Class
|
---|
76 | [StorableType("05B0D578-B285-4049-B01F-9A4D348A8C73")]
|
---|
77 |
|
---|
78 | public class SMSEMOAAlgorithm : SMSEMOAAlgorithmBase {
|
---|
79 | public SMSEMOAAlgorithm() { }
|
---|
80 |
|
---|
81 | protected SMSEMOAAlgorithm(SMSEMOAAlgorithm original, Cloner cloner) : base(original, cloner) { }
|
---|
82 |
|
---|
83 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
84 | return new SMSEMOAAlgorithm(this, cloner);
|
---|
85 | }
|
---|
86 |
|
---|
87 | [StorableConstructor]
|
---|
88 | protected SMSEMOAAlgorithm(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
89 |
|
---|
90 | protected override void Run(CancellationToken cancellationToken) {
|
---|
91 | if (previousExecutionState != ExecutionState.Paused) { // Call "base" class, SMSEMOAAlgorithmBase
|
---|
92 | InitializeAlgorithm(cancellationToken);
|
---|
93 | }
|
---|
94 |
|
---|
95 | var populationSize = PopulationSize.Value;
|
---|
96 | bool[] maximization = ((BoolArray)Problem.MaximizationParameter.ActualValue).CloneAsArray();
|
---|
97 | var maximumEvaluatedSolutions = MaximumEvaluatedSolutions.Value;
|
---|
98 | var crossover = Crossover;
|
---|
99 | var crossoverProbability = CrossoverProbability.Value;
|
---|
100 | var mutator = Mutator;
|
---|
101 | var mutationProbability = MutationProbability.Value;
|
---|
102 | var evaluator = Problem.Evaluator;
|
---|
103 | var analyzer = Analyzer;
|
---|
104 | var rand = RandomParameter.Value;
|
---|
105 | //int lambda = 1; // the size of offspring
|
---|
106 | var lambda = Lambda.Value;
|
---|
107 | //int indexOffspring = 0; // the index of offspring to be generated
|
---|
108 |
|
---|
109 | // cancellation token for the inner operations which should not be immediately cancelled
|
---|
110 | var innerToken = new CancellationToken();
|
---|
111 |
|
---|
112 |
|
---|
113 | // initilize the offspring population.
|
---|
114 | offspringPopulation = new ISMSEMOASolution[lambda];
|
---|
115 | jointPopulation = new ISMSEMOASolution[lambda + populationSize];
|
---|
116 |
|
---|
117 | // Mainloop
|
---|
118 | while (evaluatedSolutions < maximumEvaluatedSolutions && !cancellationToken.IsCancellationRequested) {
|
---|
119 |
|
---|
120 | int indexOffspring = 0;
|
---|
121 |
|
---|
122 | // Generate one offspring:
|
---|
123 | var mates = MatingSelection(rand, 2); // select parents
|
---|
124 |
|
---|
125 |
|
---|
126 | // Get the selected individuals
|
---|
127 | // int variable mate[i] --> index population --> extract "Individual" --> Clone it.
|
---|
128 | var s1 = (IScope)population[mates[0]].Individual.Clone();
|
---|
129 | var s2 = (IScope)population[mates[1]].Individual.Clone();
|
---|
130 |
|
---|
131 | // URGENT: What is global scope?
|
---|
132 | s1.Parent = s2.Parent = globalScope;
|
---|
133 |
|
---|
134 | IScope childScope = null;
|
---|
135 |
|
---|
136 | // crossover
|
---|
137 | if (rand.NextDouble() < crossoverProbability) {
|
---|
138 | childScope = new Scope($"{mates[0]}+{mates[1]}") { Parent = executionContext.Scope };
|
---|
139 | childScope.SubScopes.Add(s1);
|
---|
140 | childScope.SubScopes.Add(s2);
|
---|
141 | // The crossover is executed by using SubScope information.
|
---|
142 | var opCrossover = executionContext.CreateChildOperation(crossover, childScope);
|
---|
143 | ExecuteOperation(executionContext, innerToken, opCrossover);
|
---|
144 | // Clear the SubScopes for the next useage in the next iteration.
|
---|
145 | childScope.SubScopes.Clear(); // <<-- VERY IMPORTANT!
|
---|
146 | }
|
---|
147 | else {
|
---|
148 | // mutation
|
---|
149 | childScope = childScope ?? s1;
|
---|
150 | var opMutation = executionContext.CreateChildOperation(mutator, childScope);
|
---|
151 | ExecuteOperation(executionContext, innerToken, opMutation);
|
---|
152 | }
|
---|
153 |
|
---|
154 | // evaluation
|
---|
155 | if (childScope != null) { // Evaluate the childScope
|
---|
156 | var opEvaluation = executionContext.CreateChildOperation(evaluator, childScope);
|
---|
157 | ExecuteOperation(executionContext, innerToken, opEvaluation);
|
---|
158 |
|
---|
159 | // childScope
|
---|
160 | var qualities = (DoubleArray)childScope.Variables["Qualities"].Value;
|
---|
161 | var childSolution = new SMSEMOASolution(childScope, maximization.Length, 0);
|
---|
162 | // set child qualities
|
---|
163 | for (int j = 0; j < maximization.Length; ++j) {
|
---|
164 | childSolution.Qualities[j] = maximization[j] ? 1 - qualities[j] : qualities[j];
|
---|
165 | }
|
---|
166 | IdealPoint.UpdateIdeal(childSolution.Qualities);
|
---|
167 | NadirPoint.UpdateNadir(childSolution.Qualities);
|
---|
168 |
|
---|
169 | // TODO, KF -- For later usage when $lambda > 1$
|
---|
170 | childSolution.HypervolumeContribution = null;
|
---|
171 | childSolution.NondominanceRanking = null;
|
---|
172 |
|
---|
173 | offspringPopulation[indexOffspring] = childSolution;
|
---|
174 |
|
---|
175 | ++evaluatedSolutions;
|
---|
176 | }
|
---|
177 | else {
|
---|
178 | // no crossover or mutation were applied, a child was not produced, do nothing
|
---|
179 | }
|
---|
180 |
|
---|
181 | if (evaluatedSolutions >= maximumEvaluatedSolutions) {
|
---|
182 | break;
|
---|
183 | }
|
---|
184 |
|
---|
185 | // Update jointPopulation
|
---|
186 | population.CopyTo(jointPopulation, 0);
|
---|
187 | offspringPopulation.CopyTo(jointPopulation, populationSize);
|
---|
188 |
|
---|
189 | // Update the population according to the S-metric selection.
|
---|
190 | // TODO:
|
---|
191 | // See the details of TODO list at the beginning for this file ....
|
---|
192 | SmetricSelection(lambda);
|
---|
193 |
|
---|
194 | // run analyzer
|
---|
195 | var analyze = executionContext.CreateChildOperation(analyzer, globalScope);
|
---|
196 | ExecuteOperation(executionContext, innerToken, analyze);
|
---|
197 | // update Pareto-front approximation sets
|
---|
198 | UpdateParetoFronts();
|
---|
199 | // Show some results in the GUI.
|
---|
200 | Results.AddOrUpdateResult("IdealPoint", new DoubleArray(IdealPoint));
|
---|
201 | Results.AddOrUpdateResult("NadirPoint", new DoubleArray(NadirPoint));
|
---|
202 | Results.AddOrUpdateResult("Evaluated Solutions", new IntValue(evaluatedSolutions));
|
---|
203 |
|
---|
204 | // Update globalScope
|
---|
205 | globalScope.SubScopes.Replace(population.Select(x => (IScope)x.Individual));
|
---|
206 | }
|
---|
207 | }
|
---|
208 | }
|
---|
209 | }
|
---|