1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.Instances.TSPLIB {
|
---|
27 | public class TSPLIBHeterogeneousPTSPInstanceProvider : TSPLIBPTSPInstanceProvider {
|
---|
28 |
|
---|
29 | public override string Name {
|
---|
30 | get { return "TSPLIB (heterogeneous symmetric PTSP)"; }
|
---|
31 | }
|
---|
32 |
|
---|
33 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
34 | foreach (var desc in base.GetDataDescriptors().OfType<TSPLIBDataDescriptor>()) {
|
---|
35 | desc.SolutionIdentifier = null;
|
---|
36 | yield return desc;
|
---|
37 | }
|
---|
38 | }
|
---|
39 |
|
---|
40 | protected override double[] GetProbabilities(IDataDescriptor descriptor, PTSPData instance) {
|
---|
41 | var random = new MarsagliaRandom(GetInstanceHash(instance.Name));
|
---|
42 | return Enumerable.Range(0, instance.Dimension).Select(_ => (int)Math.Round((0.1 + 0.9 * random.NextDouble()) * 100) / 100.0).ToArray();
|
---|
43 | }
|
---|
44 |
|
---|
45 | // Bernstein's hash function
|
---|
46 | private uint GetInstanceHash(string name) {
|
---|
47 | uint hash = 5381;
|
---|
48 | var len = name.Length;
|
---|
49 | for (var i = 0; i < len; i++)
|
---|
50 | unchecked { hash = ((hash * 33) + name[i]); }
|
---|
51 | return hash;
|
---|
52 | }
|
---|
53 |
|
---|
54 | /// <summary>
|
---|
55 | /// This class is used to randomly generate PTSP instances given the TSPLIB instances.
|
---|
56 | /// An own implementation of a RNG was used in order to avoid possible implementation changes
|
---|
57 | /// in future .NET versions which would result in entirely different instances.
|
---|
58 | /// </summary>
|
---|
59 | /// <remarks>
|
---|
60 | /// RNG is implemented according to George Marsaglia https://en.wikipedia.org/wiki/Multiply-with-carry
|
---|
61 | /// </remarks>
|
---|
62 | private class MarsagliaRandom {
|
---|
63 | /*
|
---|
64 | * S = 2111111111*X[n-4] + 1492*X[n-3] + 1776*X[n-2] + 5115*X[n-1] + C
|
---|
65 | * X[n] = S modulo 2^32
|
---|
66 | * C = floor(S / 2^32)
|
---|
67 | *
|
---|
68 | */
|
---|
69 | private readonly uint[] mem = new uint[4];
|
---|
70 | private uint c;
|
---|
71 |
|
---|
72 | public MarsagliaRandom(uint s) {
|
---|
73 | int i;
|
---|
74 | for (i = 0; i < mem.Length; i++) {
|
---|
75 | unchecked { s = s * 31294061 + 1; }
|
---|
76 | mem[i] = s;
|
---|
77 | }
|
---|
78 | unchecked { c = s * 31294061 + 1; }
|
---|
79 | }
|
---|
80 |
|
---|
81 | private uint Next() {
|
---|
82 | unchecked {
|
---|
83 | ulong wsum = 2111111111 * mem[0]
|
---|
84 | + 1492 * mem[1]
|
---|
85 | + 1776 * mem[2]
|
---|
86 | + 5115 * mem[3]
|
---|
87 | + c;
|
---|
88 |
|
---|
89 | mem[0] = mem[1];
|
---|
90 | mem[1] = mem[2];
|
---|
91 | mem[2] = mem[3];
|
---|
92 | mem[3] = (uint)wsum;
|
---|
93 | c = (uint)(wsum >> 32);
|
---|
94 | return mem[3];
|
---|
95 | }
|
---|
96 | }
|
---|
97 |
|
---|
98 | public double NextDouble() {
|
---|
99 | return (double)Next() / uint.MaxValue;
|
---|
100 | }
|
---|
101 | }
|
---|
102 | }
|
---|
103 | }
|
---|