[17399] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Random;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.Instances.DataAnalysis
|
---|
| 29 | {
|
---|
| 30 | public class ScalingProblem5 : ArtificialRegressionDataDescriptor
|
---|
| 31 | {
|
---|
| 32 |
|
---|
| 33 | public override string Name { get { return "JKK-5 F5(X1,X2,X3) = sqrt(X1/log(X2)) + X1/X3"; } }
|
---|
| 34 | public override string Description
|
---|
| 35 | {
|
---|
| 36 | get
|
---|
| 37 | {
|
---|
| 38 | return "Function: F5(X1,X2,X3) = sqrt(X1/log(X2)) + X1/X3" + Environment.NewLine
|
---|
| 39 | + "Data: 250 points X1, X3 = Rand(1, 2), X2 = Rand(2,100)" + Environment.NewLine
|
---|
| 40 | + "Function Set: +, -, *, /, square, e^x, e^-x, x^eps, x + eps, x * eps";
|
---|
| 41 | }
|
---|
| 42 | }
|
---|
| 43 | protected override string TargetVariable { get { return "Y"; } }
|
---|
| 44 | protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "Y" }; } }
|
---|
| 45 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3" }; } }
|
---|
| 46 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 47 | protected override int TrainingPartitionEnd { get { return 250; } }
|
---|
| 48 | protected override int TestPartitionStart { get { return 250; } }
|
---|
| 49 | protected override int TestPartitionEnd { get { return 1000; } }
|
---|
| 50 |
|
---|
| 51 | public int Seed { get; private set; }
|
---|
| 52 |
|
---|
| 53 | public ScalingProblem5() : this((int)DateTime.Now.Ticks) { }
|
---|
| 54 |
|
---|
| 55 | public ScalingProblem5(int seed) : base()
|
---|
| 56 | {
|
---|
| 57 | Seed = seed;
|
---|
| 58 | }
|
---|
| 59 | protected override List<List<double>> GenerateValues()
|
---|
| 60 | {
|
---|
| 61 | var rand = new MersenneTwister((uint)Seed);
|
---|
| 62 |
|
---|
| 63 | var data = Enumerable.Range(0, AllowedInputVariables.Count()).Select(_ => Enumerable.Range(0, TestPartitionEnd).Select(__ => rand.NextDouble() + 1).ToList()).ToList();
|
---|
| 64 | data[1] = Enumerable.Range(0, TestPartitionEnd).Select(_ => rand.NextDouble() * 99 + 1).ToList();
|
---|
| 65 |
|
---|
| 66 | double x1, x2, x3;
|
---|
| 67 | List<double> results = new List<double>();
|
---|
| 68 | for (int i = 0; i < data[0].Count; i++)
|
---|
| 69 | {
|
---|
| 70 | x1 = data[0][i];
|
---|
| 71 | x2 = data[1][i];
|
---|
| 72 | x3 = data[2][i];
|
---|
| 73 | results.Add(Math.Sqrt(x1 / (Math.Log(x2))) + (x1 / x3));
|
---|
| 74 | }
|
---|
| 75 | data.Add(results);
|
---|
| 76 |
|
---|
| 77 | return data;
|
---|
| 78 | }
|
---|
| 79 | }
|
---|
| 80 | }
|
---|