1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Random;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.Instances.DataAnalysis
|
---|
29 | {
|
---|
30 | public class ScalingProblem4 : ArtificialRegressionDataDescriptor
|
---|
31 | {
|
---|
32 |
|
---|
33 | public override string Name { get { return "JKK-4 F4(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10) = X1/X2 + X3/X4 + X5/X6 + X1*X7/X9 + X3*X6/X10)"; } }
|
---|
34 | public override string Description
|
---|
35 | {
|
---|
36 | get
|
---|
37 | {
|
---|
38 | return "Function: F4(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10) = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10)" + Environment.NewLine
|
---|
39 | + "Data: 250 points X1, X2, X3, X4, X5, X6, X7, X8, X9, X10 = Rand(10, 20)" + Environment.NewLine
|
---|
40 | + "Function Set: +, -, *, /, square, e^x, e^-x, x^eps, x + eps, x * eps";
|
---|
41 | }
|
---|
42 | }
|
---|
43 | protected override string TargetVariable { get { return "Y"; } }
|
---|
44 | protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } }
|
---|
45 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } }
|
---|
46 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
47 | protected override int TrainingPartitionEnd { get { return 250; } }
|
---|
48 | protected override int TestPartitionStart { get { return 250; } }
|
---|
49 | protected override int TestPartitionEnd { get { return 1000; } }
|
---|
50 |
|
---|
51 | public int Seed { get; private set; }
|
---|
52 |
|
---|
53 | public ScalingProblem4() : this((int)DateTime.Now.Ticks) { }
|
---|
54 |
|
---|
55 | public ScalingProblem4(int seed) : base()
|
---|
56 | {
|
---|
57 | Seed = seed;
|
---|
58 | }
|
---|
59 | protected override List<List<double>> GenerateValues()
|
---|
60 | {
|
---|
61 | var rand = new MersenneTwister((uint)Seed);
|
---|
62 | var data = Enumerable.Range(0, AllowedInputVariables.Count()).Select(_ => Enumerable.Range(0, TestPartitionEnd).Select(__ => rand.NextDouble() * 10 + 10).ToList()).ToList();
|
---|
63 |
|
---|
64 | double x1, x2, x3, x4, x5, x6, x7, x8, x9, x10;
|
---|
65 |
|
---|
66 | List<double> results = new List<double>();
|
---|
67 | for (int i = 0; i < data[0].Count; i++)
|
---|
68 | {
|
---|
69 | x1 = data[0][i];
|
---|
70 | x2 = data[1][i];
|
---|
71 | x3 = data[2][i];
|
---|
72 | x4 = data[3][i];
|
---|
73 | x5 = data[4][i];
|
---|
74 | x6 = data[5][i];
|
---|
75 | x7 = data[6][i];
|
---|
76 | x8 = data[7][i];
|
---|
77 | x9 = data[8][i];
|
---|
78 | x10 = data[9][i];
|
---|
79 | results.Add(x1 / x2 + x3 / x4 + x5 / x6 + x1 * x7 / x9 + x3 * x6 / x10);
|
---|
80 | }
|
---|
81 | data.Add(results);
|
---|
82 |
|
---|
83 | return data;
|
---|
84 | }
|
---|
85 | }
|
---|
86 | }
|
---|