Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3040_VectorBasedGP/HeuristicLab.Random/3.3/NormalDistributedRandomPolar.cs @ 17874

Last change on this file since 17874 was 17825, checked in by pfleck, 4 years ago

#3040 Merged trunk into branch.

File size: 5.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HEAL.Attic;
26
27namespace HeuristicLab.Random {
28
29  /// <summary>
30  /// Normally distributed random variable.
31  /// Uses Marsaglia's polar method
32  /// </summary>
33  [Item("NormalDistributedRandomPolar", "A pseudo random number generator which uses Marsaglia's polar method to create normally distributed random numbers.")]
34  [StorableType("B17E35DB-1DC6-434A-8F08-4AD4AB224C59")]
35  public sealed class NormalDistributedRandomPolar : Item, IRandom {
36    [Storable]
37    private double mu;
38    /// <summary>
39    /// Gets or sets the value for µ.
40    /// </summary>
41    public double Mu {
42      get { return mu; }
43      set { mu = value; }
44    }
45
46    [Storable]
47    private double sigma;
48    /// <summary>
49    /// Gets or sets the value for sigma.
50    /// </summary>
51    public double Sigma {
52      get { return sigma; }
53      set { sigma = value; }
54    }
55
56    [Storable]
57    private IRandom uniform;
58
59
60    [StorableConstructor]
61    private NormalDistributedRandomPolar(StorableConstructorFlag _) : base(_) { }
62
63    private NormalDistributedRandomPolar(NormalDistributedRandomPolar original, Cloner cloner)
64      : base(original, cloner) {
65      uniform = cloner.Clone(original.uniform);
66      mu = original.mu;
67      sigma = original.sigma;
68    }
69
70    /// <summary>
71    /// Initializes a new instance of <see cref="NormalDistributedRandomPolar"/> with µ = 0 and sigma = 1
72    /// and a new random number generator.
73    /// </summary>
74    public NormalDistributedRandomPolar() {
75      this.mu = 0.0;
76      this.sigma = 1.0;
77      this.uniform = new MersenneTwister();
78    }
79
80    /// <summary>
81    /// Initializes a new instance of <see cref="NormalDistributedRandomPolar"/> with the given parameters.
82    /// <note type="caution"> The random number generator is not copied!</note>
83    /// </summary>   
84    /// <param name="uniformRandom">The random number generator.</param>
85    /// <param name="mu">The value for µ.</param>
86    /// <param name="sigma">The value for sigma.</param>
87    public NormalDistributedRandomPolar(IRandom uniformRandom, double mu, double sigma) {
88      this.mu = mu;
89      this.sigma = sigma;
90      this.uniform = uniformRandom;
91    }
92
93    #region IRandom Members
94
95    /// <inheritdoc cref="IRandom.Reset()"/>
96    public void Reset() {
97      uniform.Reset();
98    }
99
100    /// <inheritdoc cref="IRandom.Reset(int)"/>
101    public void Reset(int seed) {
102      uniform.Reset(seed);
103    }
104
105    /// <summary>
106    /// This method is not implemented.
107    /// </summary>
108    public int Next() {
109      throw new NotImplementedException();
110    }
111
112    /// <summary>
113    /// This method is not implemented.
114    /// </summary>
115    public int Next(int maxVal) {
116      throw new NotImplementedException();
117    }
118
119    /// <summary>
120    /// This method is not implemented.
121    /// </summary>
122    public int Next(int minVal, int maxVal) {
123      throw new NotImplementedException();
124    }
125
126    /// <summary>
127    /// Generates a new double random number.
128    /// </summary>
129    /// <returns>A double random number.</returns>
130    public double NextDouble() {
131      return NormalDistributedRandomPolar.NextDouble(uniform, mu, sigma);
132    }
133
134    #endregion
135
136    /// <summary>
137    /// Clones the current instance (deep clone).
138    /// </summary>
139    /// <returns>The cloned object as <see cref="NormalDistributedRandomPolar"/>.</returns>
140    public override IDeepCloneable Clone(Cloner cloner) {
141      return new NormalDistributedRandomPolar(this, cloner);
142    }
143
144
145    /**
146     * Polar method due to Marsaglia.
147     *
148     * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
149     * New York, 1986, Ch. V, Sect. 4.4.
150     */
151    public static double NextDouble(IRandom uniformRandom, double mu, double sigma) {
152      // we don't use spare numbers (efficency loss but easier for multi-threaded code)
153      double u, v, s;
154      do {
155        u = uniformRandom.NextDouble() * 2 - 1;
156        v = uniformRandom.NextDouble() * 2 - 1;
157        s = u * u + v * v;
158      } while (s > 1 || s == 0);
159      s = Math.Sqrt(-2.0 * Math.Log(s) / s);
160      return mu + sigma * u * s;
161    }
162  }
163}
Note: See TracBrowser for help on using the repository browser.