1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 | using HeuristicLab.Random;
|
---|
30 | using MathNet.Numerics.Statistics;
|
---|
31 |
|
---|
32 | using DoubleVector = MathNet.Numerics.LinearAlgebra.Vector<double>;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
35 | public class AzzaliBenchmark2 : ArtificialRegressionDataDescriptor {
|
---|
36 | public override string Name { get { return "Azzali Benchmark2 B2 = ((X3 + X1) / CumMean(X4)) * X2"; } }
|
---|
37 | public override string Description { get { return "I. Azzali, L. Vanneschi, S. Silva, I. Bakurov, and M. Giacobini, “A Vectorial Approach to Genetic Programming,” EuroGP, pp. 213–227, 2019."; } }
|
---|
38 |
|
---|
39 | protected override string TargetVariable { get { return "B2"; } }
|
---|
40 | protected override string[] VariableNames { get { return AllowedInputVariables.Concat(new[] { TargetVariable }).ToArray(); } }
|
---|
41 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4" }; } }
|
---|
42 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
43 | protected override int TrainingPartitionEnd { get { return 70; } }
|
---|
44 | protected override int TestPartitionStart { get { return 70; } }
|
---|
45 | protected override int TestPartitionEnd { get { return 100; } }
|
---|
46 |
|
---|
47 | public int Seed { get; private set; }
|
---|
48 |
|
---|
49 | public AzzaliBenchmark2()
|
---|
50 | : this((int)DateTime.Now.Ticks) { }
|
---|
51 | public AzzaliBenchmark2(int seed)
|
---|
52 | : base() {
|
---|
53 | Seed = seed;
|
---|
54 | }
|
---|
55 |
|
---|
56 |
|
---|
57 | protected override List<List<double>> GenerateValues() { return null; }
|
---|
58 | protected override List<IList> GenerateValuesExtended() {
|
---|
59 | var rand = new MersenneTwister((uint)Seed);
|
---|
60 |
|
---|
61 | var x1Column = new List<double>(100);
|
---|
62 | var x2Column = new List<double>(100);
|
---|
63 | var x3Column = new List<DoubleVector>(100);
|
---|
64 | var x4Column = new List<DoubleVector>(100);
|
---|
65 | var b2Column = new List<DoubleVector>(100);
|
---|
66 |
|
---|
67 | for (int i = 0; i < 100; i++) {
|
---|
68 | var x1 = rand.NextDouble(-10, +10);
|
---|
69 | var x2 = rand.NextDouble(-10, +10);
|
---|
70 | var x3 = rand.NextDoubleVector(10, 40, 10);
|
---|
71 | var x4 = rand.NextDoubleVector(-5, +5, 10);
|
---|
72 |
|
---|
73 | var cumMean = x4.MapIndexed((j, v) => x4.SubVector(0, j + 1).Mean());
|
---|
74 | var b2 = ((x3 + x1) / cumMean) * x2;
|
---|
75 |
|
---|
76 | x1Column.Add(x1);
|
---|
77 | x2Column.Add(x2);
|
---|
78 | x3Column.Add(x3);
|
---|
79 | x4Column.Add(x4);
|
---|
80 | b2Column.Add(b2);
|
---|
81 | }
|
---|
82 |
|
---|
83 | return new List<IList> { x1Column, x2Column, x3Column, x4Column, b2Column };
|
---|
84 | }
|
---|
85 | }
|
---|
86 | } |
---|