1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.IO;
|
---|
25 | using System.IO.Compression;
|
---|
26 | using System.Linq;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
30 | public class PennMLRegressionInstanceProvider : ResourceRegressionInstanceProvider {
|
---|
31 | public override string Name {
|
---|
32 | get { return "PennML Regression Problems"; }
|
---|
33 | }
|
---|
34 |
|
---|
35 | public override string Description {
|
---|
36 | get { return "A set of datasets used for benchmarking symbolic regression algorithms."; }
|
---|
37 | }
|
---|
38 |
|
---|
39 | public override Uri WebLink {
|
---|
40 | get { return new Uri("https://github.com/EpistasisLab/penn-ml-benchmarks"); }
|
---|
41 | }
|
---|
42 |
|
---|
43 | public override string ReferencePublication {
|
---|
44 | get { return "Patryk Orzechowski, William La Cava, Jason H. Moore - Where are we now? A large benchmark study of recent symbolic regression methods"; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | protected override string FileName {
|
---|
48 | get { return "PennML"; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | // the reference publication uses 75% of the samples in each of the datasets for training and the remaining 25% for testing
|
---|
52 | private const double trainTestSplit = 0.75;
|
---|
53 |
|
---|
54 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
55 | var instanceArchiveName = GetResourceName(FileName + @"\.zip");
|
---|
56 | using (var instancesZipFile = new ZipArchive(GetType().Assembly.GetManifestResourceStream(instanceArchiveName), ZipArchiveMode.Read)) {
|
---|
57 | foreach (var entry in instancesZipFile.Entries) {
|
---|
58 | var formatOptions = GetFormatOptions(entry);
|
---|
59 |
|
---|
60 | using (var stream = entry.Open()) {
|
---|
61 | using (var reader = new StreamReader(stream)) {
|
---|
62 | var header = reader.ReadLine(); // read the first line
|
---|
63 |
|
---|
64 | // by convention each dataset from the PennML collection reserves the last column for the target
|
---|
65 | var variableNames = header.Split(formatOptions.ColumnSeparator);
|
---|
66 | var allowedInputVariables = variableNames.Take(variableNames.Length - 1);
|
---|
67 | var target = variableNames.Last();
|
---|
68 |
|
---|
69 | // count lines
|
---|
70 | int lines = 0; while (reader.ReadLine() != null) lines++;
|
---|
71 |
|
---|
72 | var trainEnd = (int)Math.Round(lines * trainTestSplit);
|
---|
73 | var trainRange = new IntRange(0, trainEnd);
|
---|
74 | var testRange = new IntRange(trainEnd, lines);
|
---|
75 |
|
---|
76 | var descriptor = new PennMLRegressionDataDescriptor(entry.Name, variableNames, allowedInputVariables, target, trainRange, testRange);
|
---|
77 | yield return descriptor;
|
---|
78 | }
|
---|
79 | }
|
---|
80 | }
|
---|
81 | }
|
---|
82 | }
|
---|
83 | }
|
---|
84 | }
|
---|