1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Collections.ObjectModel;
|
---|
26 | using System.Diagnostics;
|
---|
27 | using System.Globalization;
|
---|
28 | using System.IO;
|
---|
29 | using System.IO.Compression;
|
---|
30 | using System.Linq;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
32 |
|
---|
33 | using DoubleVector = MathNet.Numerics.LinearAlgebra.Vector<double>;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
36 | public abstract class TimeSeriesInstanceProvider : ResourceClassificationInstanceProvider {
|
---|
37 | //public override string Name {
|
---|
38 | // get { return "TimeSeries (Univariate) Problems"; }
|
---|
39 | //}
|
---|
40 | public override string Description {
|
---|
41 | get { return "UEA & UCR TimeSeries Problems"; }
|
---|
42 | }
|
---|
43 | public override Uri WebLink {
|
---|
44 | get { return new Uri("http://www.timeseriesclassification.com/"); }
|
---|
45 | }
|
---|
46 | public override string ReferencePublication {
|
---|
47 | get { return "Anthony Bagnall, Jason Lines, William Vickers and Eamonn Keogh, The UEA & UCR Time Series Classification Repository, www.timeseriesclassification.com"; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | public override IClassificationProblemData LoadData(IDataDescriptor id) {
|
---|
51 | var descriptor = (TimeSeriesDataDescriptor)id;
|
---|
52 | using (var instancesZipFile = OpenZipArchive()) {
|
---|
53 | var trainingEntry = instancesZipFile.GetEntry(descriptor.TrainingEntryName);
|
---|
54 | var testEntry = instancesZipFile.GetEntry(descriptor.TestEntryName);
|
---|
55 |
|
---|
56 | if (trainingEntry == null || testEntry == null) {
|
---|
57 | throw new InvalidOperationException("The training or test entry could not be found in the archive.");
|
---|
58 | }
|
---|
59 |
|
---|
60 | using (var trainingReader = new StreamReader(trainingEntry.Open()))
|
---|
61 | using (var testReader = new StreamReader(testEntry.Open())) {
|
---|
62 | ParseMetadata(trainingReader, out var inputVariables, out string targetVariable, out var classLabels);
|
---|
63 | ParseMetadata(testReader, out _, out _, out _); // ignore outputs
|
---|
64 |
|
---|
65 | // Read data
|
---|
66 | var inputsData = new List<DoubleVector>[inputVariables.Count];
|
---|
67 | for (int i = 0; i < inputsData.Length; i++) inputsData[i] = new List<DoubleVector>();
|
---|
68 | bool numericTarget = classLabels.All(label => !double.IsNaN(ParseNumber(label)));
|
---|
69 | IList targetData = numericTarget ? new List<double>() : new List<string>() as IList;
|
---|
70 | ReadData(trainingReader, inputsData, targetData, out int numTrainingRows);
|
---|
71 | ReadData(testReader, inputsData, targetData, out int numTestRows);
|
---|
72 |
|
---|
73 | // Translate class values to numeric values
|
---|
74 | if (targetData is List<string> stringTargetData) {
|
---|
75 | var labelTranslation = classLabels
|
---|
76 | .Select((x, i) => new { Label = x, i })
|
---|
77 | .ToDictionary(x => x.Label, x => (double)x.i);
|
---|
78 | targetData = stringTargetData.Select(label => labelTranslation[label]).ToList();
|
---|
79 | }
|
---|
80 |
|
---|
81 | // Build dataset
|
---|
82 | var dataset = new Dataset(
|
---|
83 | inputVariables.Concat(new[] { targetVariable }),
|
---|
84 | inputsData.Concat(new[] { targetData })
|
---|
85 | );
|
---|
86 | Debug.Assert(dataset.Rows == numTrainingRows + numTestRows);
|
---|
87 | Debug.Assert(dataset.Columns == inputVariables.Count + 1);
|
---|
88 |
|
---|
89 | // Build problem data
|
---|
90 | var problemData = new ClassificationProblemData(dataset, inputVariables, targetVariable) {
|
---|
91 | Name = descriptor.Name
|
---|
92 | };
|
---|
93 | problemData.TrainingPartition.Start = 0;
|
---|
94 | problemData.TrainingPartition.End = numTrainingRows;
|
---|
95 | problemData.TestPartition.Start = numTrainingRows;
|
---|
96 | problemData.TestPartition.End = numTrainingRows + numTestRows;
|
---|
97 |
|
---|
98 | return problemData;
|
---|
99 | }
|
---|
100 | }
|
---|
101 | }
|
---|
102 |
|
---|
103 | private static void ParseMetadata(StreamReader reader, out List<string> inputVariables, out string targetVariable, out List<string> classLabels) {
|
---|
104 | int nrOfInputs = 0;
|
---|
105 | IEnumerable<string> labels = null;
|
---|
106 | bool dataStart = false;
|
---|
107 |
|
---|
108 | while (!reader.EndOfStream && !dataStart) {
|
---|
109 | var line = reader.ReadLine();
|
---|
110 | if (line.StartsWith("#")) {
|
---|
111 | // Comment
|
---|
112 | } else if (line.StartsWith("@")) {
|
---|
113 | var splits = line.Split(' ');
|
---|
114 | var type = splits.First();
|
---|
115 | var arguments = splits.Skip(1).ToList();
|
---|
116 | switch (type) {
|
---|
117 | case "@univariate":
|
---|
118 | bool univariate = bool.Parse(arguments[0]);
|
---|
119 | if (univariate)
|
---|
120 | nrOfInputs = 1;
|
---|
121 | break;
|
---|
122 | case "@dimensions":
|
---|
123 | int dimensions = int.Parse(arguments[0]);
|
---|
124 | nrOfInputs = dimensions;
|
---|
125 | break;
|
---|
126 | case "@classLabel":
|
---|
127 | bool containLabels = bool.Parse(arguments[0]);
|
---|
128 | if (containLabels)
|
---|
129 | labels = arguments.Skip(1);
|
---|
130 | break;
|
---|
131 | case "@data":
|
---|
132 | dataStart = true;
|
---|
133 | break;
|
---|
134 | }
|
---|
135 | } else {
|
---|
136 | throw new InvalidOperationException("A data section already occurred within metadata section.");
|
---|
137 | }
|
---|
138 | }
|
---|
139 |
|
---|
140 | int digits = Math.Max((int)Math.Log10(nrOfInputs - 1) + 1, 1);
|
---|
141 | inputVariables = Enumerable.Range(0, nrOfInputs)
|
---|
142 | .Select(i => "X" + i.ToString("D" + digits))
|
---|
143 | .ToList();
|
---|
144 |
|
---|
145 | targetVariable = "Y";
|
---|
146 |
|
---|
147 | classLabels = labels.ToList();
|
---|
148 | }
|
---|
149 |
|
---|
150 | private static void ReadData(StreamReader reader, List<DoubleVector>[] inputsData, IList targetData, out int count) {
|
---|
151 | var numericTargetData = targetData as List<double>;
|
---|
152 | var stringTargetData = targetData as List<string>;
|
---|
153 |
|
---|
154 | count = 0;
|
---|
155 | while (!reader.EndOfStream) {
|
---|
156 | var line = reader.ReadLine();
|
---|
157 | var variables = line.Split(':');
|
---|
158 |
|
---|
159 | // parse all except last, which is the non-vector target
|
---|
160 | for (int i = 0; i < variables.Length - 1; i++) {
|
---|
161 | var variable = variables[i];
|
---|
162 | var numbers = variable
|
---|
163 | .Split(',')
|
---|
164 | .Select(ParseNumber);
|
---|
165 | inputsData[i].Add(DoubleVector.Build.DenseOfEnumerable(numbers));
|
---|
166 | }
|
---|
167 |
|
---|
168 | var target = variables[variables.Length - 1];
|
---|
169 | if (numericTargetData != null) numericTargetData.Add(ParseNumber(target));
|
---|
170 | else if (stringTargetData != null) stringTargetData.Add(target);
|
---|
171 | else throw new InvalidOperationException("Target must either be numeric or a string.");
|
---|
172 |
|
---|
173 | count++;
|
---|
174 | }
|
---|
175 | }
|
---|
176 |
|
---|
177 | private static double ParseNumber(string number) {
|
---|
178 | return
|
---|
179 | double.TryParse(number, NumberStyles.Float, CultureInfo.InvariantCulture, out double parsed)
|
---|
180 | ? parsed
|
---|
181 | : double.NaN;
|
---|
182 | }
|
---|
183 |
|
---|
184 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
185 | using (var instancesZipFile = OpenZipArchive()) {
|
---|
186 | var instances = GroupEntriesByInstance(instancesZipFile.Entries);
|
---|
187 | var descriptors = instances.Select(instance => CreateDescriptor(instance.Key, instance.Value));
|
---|
188 |
|
---|
189 | return descriptors.ToList();
|
---|
190 | }
|
---|
191 | }
|
---|
192 |
|
---|
193 | private ZipArchive OpenZipArchive() {
|
---|
194 | var instanceArchiveName = Path.Combine("Classification", "Data", FileName + ".zip");
|
---|
195 | var stream = new FileStream(instanceArchiveName, FileMode.Open, FileAccess.Read, FileShare.Read);
|
---|
196 | return new ZipArchive(stream, ZipArchiveMode.Read);
|
---|
197 | }
|
---|
198 |
|
---|
199 | private static IDictionary<string, List<ZipArchiveEntry>> GroupEntriesByInstance(ReadOnlyCollection<ZipArchiveEntry> entries) {
|
---|
200 | var topLevelEntries = entries.Where(entry => string.IsNullOrEmpty(entry.Name)).ToList();
|
---|
201 |
|
---|
202 | return topLevelEntries.ToDictionary(
|
---|
203 | entry => Path.GetDirectoryName(entry.FullName),
|
---|
204 | entry => entries.Except(topLevelEntries).Where(subEntry => subEntry.FullName.StartsWith(entry.FullName)).ToList());
|
---|
205 | }
|
---|
206 |
|
---|
207 | private static TimeSeriesDataDescriptor CreateDescriptor(string name, List<ZipArchiveEntry> subEntries) {
|
---|
208 | var trainingEntry = subEntries.Single(entry => entry.Name.EndsWith("_TRAIN.ts"));
|
---|
209 | var testEntry = subEntries.Single(entry => entry.Name.EndsWith("_TEST.ts"));
|
---|
210 | return new TimeSeriesDataDescriptor(name, trainingEntry.FullName, testEntry.FullName);
|
---|
211 | }
|
---|
212 | }
|
---|
213 | }
|
---|