1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HEAL.Attic;
|
---|
31 | using MathNet.Numerics;
|
---|
32 | using MathNet.Numerics.Statistics;
|
---|
33 | using DoubleVector = MathNet.Numerics.LinearAlgebra.Vector<double>;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
36 | [StorableType("DE68A1D9-5AFC-4DDD-AB62-29F3B8FC28E0")]
|
---|
37 | [Item("SymbolicDataAnalysisExpressionTreeVectorInterpreter", "Interpreter for symbolic expression trees including vector arithmetic.")]
|
---|
38 | public class SymbolicDataAnalysisExpressionTreeVectorInterpreter : ParameterizedNamedItem, ISymbolicDataAnalysisExpressionTreeInterpreter {
|
---|
39 | [StorableType("2612504E-AD5F-4AE2-B60E-98A5AB59E164")]
|
---|
40 | public enum Aggregation {
|
---|
41 | Mean,
|
---|
42 | Median,
|
---|
43 | Sum,
|
---|
44 | First,
|
---|
45 | L1Norm,
|
---|
46 | L2Norm,
|
---|
47 | NaN,
|
---|
48 | Exception
|
---|
49 | }
|
---|
50 | public static double Aggregate(Aggregation aggregation, DoubleVector vector) {
|
---|
51 | switch (aggregation) {
|
---|
52 | case Aggregation.Mean: return Statistics.Mean(vector);
|
---|
53 | case Aggregation.Median: return Statistics.Median(vector);
|
---|
54 | case Aggregation.Sum: return vector.Sum();
|
---|
55 | case Aggregation.First: return vector.First();
|
---|
56 | case Aggregation.L1Norm: return vector.L1Norm();
|
---|
57 | case Aggregation.L2Norm: return vector.L2Norm();
|
---|
58 | case Aggregation.NaN: return double.NaN;
|
---|
59 | case Aggregation.Exception: throw new InvalidOperationException("Result of the tree is not a scalar.");
|
---|
60 | default: throw new ArgumentOutOfRangeException(nameof(aggregation), aggregation, null);
|
---|
61 | }
|
---|
62 | }
|
---|
63 |
|
---|
64 | [StorableType("73DCBB45-916F-4139-8ADC-57BA610A1B66")]
|
---|
65 | public enum VectorLengthStrategy {
|
---|
66 | ExceptionIfDifferent,
|
---|
67 | FillShorterWithNaN,
|
---|
68 | FillShorterWithNeutralElement,
|
---|
69 | CutLonger,
|
---|
70 | ResampleToLonger,
|
---|
71 | ResampleToShorter,
|
---|
72 | CycleShorter
|
---|
73 | }
|
---|
74 |
|
---|
75 | #region Implementation VectorLengthStrategy
|
---|
76 | public static (DoubleVector, DoubleVector) ExceptionIfDifferent(DoubleVector lhs, DoubleVector rhs) {
|
---|
77 | if (lhs.Count != rhs.Count)
|
---|
78 | throw new InvalidOperationException($"Vector Lengths incompatible ({lhs.Count} vs. {rhs.Count}");
|
---|
79 | return (lhs, rhs);
|
---|
80 | }
|
---|
81 |
|
---|
82 | public static (DoubleVector, DoubleVector) FillShorter(DoubleVector lhs, DoubleVector rhs, double fillElement) {
|
---|
83 | var targetLength = Math.Max(lhs.Count, rhs.Count);
|
---|
84 |
|
---|
85 | DoubleVector PadVector(DoubleVector v) {
|
---|
86 | if (v.Count == targetLength) return v;
|
---|
87 | var p = DoubleVector.Build.Dense(targetLength, fillElement);
|
---|
88 | v.CopySubVectorTo(p, 0, 0, v.Count);
|
---|
89 | return p;
|
---|
90 | }
|
---|
91 |
|
---|
92 | return (PadVector(lhs), PadVector(rhs));
|
---|
93 | }
|
---|
94 |
|
---|
95 | public static (DoubleVector, DoubleVector) CutLonger(DoubleVector lhs, DoubleVector rhs) {
|
---|
96 | var targetLength = Math.Min(lhs.Count, rhs.Count);
|
---|
97 |
|
---|
98 | DoubleVector CutVector(DoubleVector v) {
|
---|
99 | if (v.Count == targetLength) return v;
|
---|
100 | return v.SubVector(0, targetLength);
|
---|
101 | }
|
---|
102 |
|
---|
103 | return (CutVector(lhs), CutVector(rhs));
|
---|
104 | }
|
---|
105 |
|
---|
106 | private static DoubleVector ResampleToLength(DoubleVector v, int targetLength) {
|
---|
107 | if (v.Count == targetLength) return v;
|
---|
108 |
|
---|
109 | var indices = Enumerable.Range(0, v.Count).Select(x => (double)x);
|
---|
110 | var interpolation = Interpolate.Linear(indices, v);
|
---|
111 |
|
---|
112 | var resampledIndices = Enumerable.Range(0, targetLength).Select(i => (double)i / targetLength * v.Count);
|
---|
113 | var interpolatedValues = resampledIndices.Select(interpolation.Interpolate);
|
---|
114 |
|
---|
115 | return DoubleVector.Build.DenseOfEnumerable(interpolatedValues);
|
---|
116 | }
|
---|
117 | public static (DoubleVector, DoubleVector) ResampleToLonger(DoubleVector lhs, DoubleVector rhs) {
|
---|
118 | var maxLength = Math.Max(lhs.Count, rhs.Count);
|
---|
119 | return (ResampleToLength(lhs, maxLength), ResampleToLength(rhs, maxLength));
|
---|
120 | }
|
---|
121 | public static (DoubleVector, DoubleVector) ResampleToShorter(DoubleVector lhs, DoubleVector rhs) {
|
---|
122 | var minLength = Math.Min(lhs.Count, rhs.Count);
|
---|
123 | return (ResampleToLength(lhs, minLength), ResampleToLength(rhs, minLength));
|
---|
124 | }
|
---|
125 |
|
---|
126 | public static (DoubleVector, DoubleVector) CycleShorter(DoubleVector lhs, DoubleVector rhs) {
|
---|
127 | var targetLength = Math.Max(lhs.Count, rhs.Count);
|
---|
128 |
|
---|
129 | DoubleVector CycleVector(DoubleVector v) {
|
---|
130 | if (v.Count == targetLength) return v;
|
---|
131 | var cycledValues = Enumerable.Range(0, targetLength).Select(i => v[i % v.Count]);
|
---|
132 | return DoubleVector.Build.DenseOfEnumerable(cycledValues);
|
---|
133 | }
|
---|
134 |
|
---|
135 | return (CycleVector(lhs), CycleVector(rhs));
|
---|
136 | }
|
---|
137 | #endregion
|
---|
138 |
|
---|
139 | public static (DoubleVector lhs, DoubleVector rhs) ApplyVectorLengthStrategy(VectorLengthStrategy strategy, DoubleVector lhs, DoubleVector rhs,
|
---|
140 | double neutralElement = double.NaN) {
|
---|
141 |
|
---|
142 | switch (strategy) {
|
---|
143 | case VectorLengthStrategy.ExceptionIfDifferent: return ExceptionIfDifferent(lhs, rhs);
|
---|
144 | case VectorLengthStrategy.FillShorterWithNaN: return FillShorter(lhs, rhs, double.NaN);
|
---|
145 | case VectorLengthStrategy.FillShorterWithNeutralElement: return FillShorter(lhs, rhs, neutralElement);
|
---|
146 | case VectorLengthStrategy.CutLonger: return CutLonger(lhs, rhs);
|
---|
147 | case VectorLengthStrategy.ResampleToLonger: return ResampleToLonger(lhs, rhs);
|
---|
148 | case VectorLengthStrategy.ResampleToShorter: return ResampleToShorter(lhs, rhs);
|
---|
149 | case VectorLengthStrategy.CycleShorter: return CycleShorter(lhs, rhs);
|
---|
150 | default: throw new ArgumentOutOfRangeException(nameof(strategy), strategy, null);
|
---|
151 | }
|
---|
152 | }
|
---|
153 |
|
---|
154 | #region Aggregation Symbols
|
---|
155 | private static Type[] AggregationSymbols = new[] {
|
---|
156 | typeof(Sum), typeof(Mean), typeof(Length), typeof(StandardDeviation), typeof(Variance),
|
---|
157 | typeof(EuclideanDistance), typeof(Covariance)
|
---|
158 | };
|
---|
159 | #endregion
|
---|
160 |
|
---|
161 | private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions";
|
---|
162 | private const string FinalAggregationParameterName = "FinalAggregation";
|
---|
163 | private const string DifferentVectorLengthStrategyParameterName = "DifferentVectorLengthStrategy";
|
---|
164 |
|
---|
165 | public override bool CanChangeName {
|
---|
166 | get { return false; }
|
---|
167 | }
|
---|
168 |
|
---|
169 | public override bool CanChangeDescription {
|
---|
170 | get { return false; }
|
---|
171 | }
|
---|
172 |
|
---|
173 | #region parameter properties
|
---|
174 | public IFixedValueParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
175 | get { return (IFixedValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; }
|
---|
176 | }
|
---|
177 | public IFixedValueParameter<EnumValue<Aggregation>> FinalAggregationParameter {
|
---|
178 | get { return (IFixedValueParameter<EnumValue<Aggregation>>)Parameters[FinalAggregationParameterName]; }
|
---|
179 | }
|
---|
180 | public IFixedValueParameter<EnumValue<VectorLengthStrategy>> DifferentVectorLengthStrategyParameter {
|
---|
181 | get { return (IFixedValueParameter<EnumValue<VectorLengthStrategy>>)Parameters[DifferentVectorLengthStrategyParameterName]; }
|
---|
182 | }
|
---|
183 | #endregion
|
---|
184 |
|
---|
185 | #region properties
|
---|
186 | public int EvaluatedSolutions {
|
---|
187 | get { return EvaluatedSolutionsParameter.Value.Value; }
|
---|
188 | set { EvaluatedSolutionsParameter.Value.Value = value; }
|
---|
189 | }
|
---|
190 | public Aggregation FinalAggregation {
|
---|
191 | get { return FinalAggregationParameter.Value.Value; }
|
---|
192 | set { FinalAggregationParameter.Value.Value = value; }
|
---|
193 | }
|
---|
194 | public VectorLengthStrategy DifferentVectorLengthStrategy {
|
---|
195 | get { return DifferentVectorLengthStrategyParameter.Value.Value; }
|
---|
196 | set { DifferentVectorLengthStrategyParameter.Value.Value = value; }
|
---|
197 | }
|
---|
198 | #endregion
|
---|
199 |
|
---|
200 | [StorableConstructor]
|
---|
201 | protected SymbolicDataAnalysisExpressionTreeVectorInterpreter(StorableConstructorFlag _) : base(_) { }
|
---|
202 |
|
---|
203 | protected SymbolicDataAnalysisExpressionTreeVectorInterpreter(SymbolicDataAnalysisExpressionTreeVectorInterpreter original, Cloner cloner)
|
---|
204 | : base(original, cloner) { }
|
---|
205 |
|
---|
206 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
207 | return new SymbolicDataAnalysisExpressionTreeVectorInterpreter(this, cloner);
|
---|
208 | }
|
---|
209 |
|
---|
210 | public SymbolicDataAnalysisExpressionTreeVectorInterpreter()
|
---|
211 | : this("SymbolicDataAnalysisExpressionTreeVectorInterpreter", "Interpreter for symbolic expression trees including vector arithmetic.") { }
|
---|
212 |
|
---|
213 | protected SymbolicDataAnalysisExpressionTreeVectorInterpreter(string name, string description)
|
---|
214 | : base(name, description) {
|
---|
215 | Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
|
---|
216 | Parameters.Add(new FixedValueParameter<EnumValue<Aggregation>>(FinalAggregationParameterName, "If root node of the expression tree results in a Vector it is aggregated according to this parameter", new EnumValue<Aggregation>(Aggregation.Mean)));
|
---|
217 | Parameters.Add(new FixedValueParameter<EnumValue<VectorLengthStrategy>>(DifferentVectorLengthStrategyParameterName, "", new EnumValue<VectorLengthStrategy>(VectorLengthStrategy.ExceptionIfDifferent)));
|
---|
218 | }
|
---|
219 |
|
---|
220 | [StorableHook(HookType.AfterDeserialization)]
|
---|
221 | private void AfterDeserialization() {
|
---|
222 | if (!Parameters.ContainsKey(FinalAggregationParameterName)) {
|
---|
223 | Parameters.Add(new FixedValueParameter<EnumValue<Aggregation>>(FinalAggregationParameterName, "If root node of the expression tree results in a Vector it is aggregated according to this parameter", new EnumValue<Aggregation>(Aggregation.Mean)));
|
---|
224 | }
|
---|
225 | if (!Parameters.ContainsKey(DifferentVectorLengthStrategyParameterName)) {
|
---|
226 | Parameters.Add(new FixedValueParameter<EnumValue<VectorLengthStrategy>>(DifferentVectorLengthStrategyParameterName, "", new EnumValue<VectorLengthStrategy>(VectorLengthStrategy.ExceptionIfDifferent)));
|
---|
227 | }
|
---|
228 | }
|
---|
229 |
|
---|
230 | #region IStatefulItem
|
---|
231 | public void InitializeState() {
|
---|
232 | EvaluatedSolutions = 0;
|
---|
233 | }
|
---|
234 |
|
---|
235 | public void ClearState() { }
|
---|
236 | #endregion
|
---|
237 |
|
---|
238 | private readonly object syncRoot = new object();
|
---|
239 | public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable<int> rows) {
|
---|
240 | lock (syncRoot) {
|
---|
241 | EvaluatedSolutions++; // increment the evaluated solutions counter
|
---|
242 | }
|
---|
243 | var state = PrepareInterpreterState(tree, dataset);
|
---|
244 |
|
---|
245 | foreach (var rowEnum in rows) {
|
---|
246 | int row = rowEnum;
|
---|
247 | var result = Evaluate(dataset, ref row, state);
|
---|
248 | if (result.IsScalar)
|
---|
249 | yield return result.Scalar;
|
---|
250 | else if (result.IsVector) {
|
---|
251 | yield return Aggregate(FinalAggregation, result.Vector);
|
---|
252 | } else
|
---|
253 | yield return double.NaN;
|
---|
254 | state.Reset();
|
---|
255 | }
|
---|
256 | }
|
---|
257 |
|
---|
258 | public IEnumerable<Dictionary<ISymbolicExpressionTreeNode, EvaluationResult>> GetIntermediateNodeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable<int> rows) {
|
---|
259 | var state = PrepareInterpreterState(tree, dataset);
|
---|
260 |
|
---|
261 | foreach (var rowEnum in rows) {
|
---|
262 | int row = rowEnum;
|
---|
263 | var traceDict = new Dictionary<ISymbolicExpressionTreeNode, EvaluationResult>();
|
---|
264 | var result = Evaluate(dataset, ref row, state, traceDict);
|
---|
265 | traceDict.Add(tree.Root.GetSubtree(0), result); // Add StartSymbol
|
---|
266 | yield return traceDict;
|
---|
267 | state.Reset();
|
---|
268 | }
|
---|
269 | }
|
---|
270 |
|
---|
271 | private static InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, IDataset dataset) {
|
---|
272 | Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
|
---|
273 | int necessaryArgStackSize = 0;
|
---|
274 | foreach (Instruction instr in code) {
|
---|
275 | if (instr.opCode == OpCodes.Variable) {
|
---|
276 | var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
|
---|
277 | if (dataset.VariableHasType<double>(variableTreeNode.VariableName))
|
---|
278 | instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
|
---|
279 | else if (dataset.VariableHasType<DoubleVector>(variableTreeNode.VariableName))
|
---|
280 | instr.data = dataset.GetReadOnlyDoubleVectorValues(variableTreeNode.VariableName);
|
---|
281 | else throw new NotSupportedException($"Type of variable {variableTreeNode.VariableName} is not supported.");
|
---|
282 | } else if (instr.opCode == OpCodes.FactorVariable) {
|
---|
283 | var factorTreeNode = instr.dynamicNode as FactorVariableTreeNode;
|
---|
284 | instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
|
---|
285 | } else if (instr.opCode == OpCodes.BinaryFactorVariable) {
|
---|
286 | var factorTreeNode = instr.dynamicNode as BinaryFactorVariableTreeNode;
|
---|
287 | instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
|
---|
288 | } else if (instr.opCode == OpCodes.LagVariable) {
|
---|
289 | var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
|
---|
290 | instr.data = dataset.GetReadOnlyDoubleValues(laggedVariableTreeNode.VariableName);
|
---|
291 | } else if (instr.opCode == OpCodes.VariableCondition) {
|
---|
292 | var variableConditionTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
|
---|
293 | instr.data = dataset.GetReadOnlyDoubleValues(variableConditionTreeNode.VariableName);
|
---|
294 | } else if (instr.opCode == OpCodes.Call) {
|
---|
295 | necessaryArgStackSize += instr.nArguments + 1;
|
---|
296 | }
|
---|
297 | }
|
---|
298 | return new InterpreterState(code, necessaryArgStackSize);
|
---|
299 | }
|
---|
300 |
|
---|
301 |
|
---|
302 | public struct EvaluationResult {
|
---|
303 | public double Scalar { get; }
|
---|
304 | public bool IsScalar => !double.IsNaN(Scalar);
|
---|
305 |
|
---|
306 | public DoubleVector Vector { get; }
|
---|
307 | public bool IsVector => !(Vector.Count == 1 && double.IsNaN(Vector[0]));
|
---|
308 |
|
---|
309 | public bool IsNaN => !IsScalar && !IsVector;
|
---|
310 |
|
---|
311 | public EvaluationResult(double scalar) {
|
---|
312 | Scalar = scalar;
|
---|
313 | Vector = NaNVector;
|
---|
314 | }
|
---|
315 | public EvaluationResult(DoubleVector vector) {
|
---|
316 | if (vector == null) throw new ArgumentNullException(nameof(vector));
|
---|
317 | Vector = vector;
|
---|
318 | Scalar = double.NaN;
|
---|
319 | }
|
---|
320 |
|
---|
321 | public override string ToString() {
|
---|
322 | if (IsScalar) return Scalar.ToString();
|
---|
323 | if (IsVector) return Vector.ToVectorString();
|
---|
324 | return "NaN";
|
---|
325 | }
|
---|
326 |
|
---|
327 | private static readonly DoubleVector NaNVector = DoubleVector.Build.Dense(1, double.NaN);
|
---|
328 | public static readonly EvaluationResult NaN = new EvaluationResult(double.NaN);
|
---|
329 | }
|
---|
330 |
|
---|
331 | private static EvaluationResult ArithmeticApply(EvaluationResult lhs, EvaluationResult rhs,
|
---|
332 | Func<DoubleVector, DoubleVector, (DoubleVector, DoubleVector)> lengthStrategy,
|
---|
333 | Func<double, double, double> ssFunc = null,
|
---|
334 | Func<double, DoubleVector, DoubleVector> svFunc = null,
|
---|
335 | Func<DoubleVector, double, DoubleVector> vsFunc = null,
|
---|
336 | Func<DoubleVector, DoubleVector, DoubleVector> vvFunc = null) {
|
---|
337 |
|
---|
338 | if (lhs.IsScalar && rhs.IsScalar && ssFunc != null) return new EvaluationResult(ssFunc(lhs.Scalar, rhs.Scalar));
|
---|
339 | if (lhs.IsScalar && rhs.IsVector && svFunc != null) return new EvaluationResult(svFunc(lhs.Scalar, rhs.Vector));
|
---|
340 | if (lhs.IsVector && rhs.IsScalar && vsFunc != null) return new EvaluationResult(vsFunc(lhs.Vector, rhs.Scalar));
|
---|
341 | if (lhs.IsVector && rhs.IsVector && vvFunc != null) {
|
---|
342 | if (lhs.Vector.Count == rhs.Vector.Count) {
|
---|
343 | return new EvaluationResult(vvFunc(lhs.Vector, rhs.Vector));
|
---|
344 | } else {
|
---|
345 | var (lhsVector, rhsVector) = lengthStrategy(lhs.Vector, rhs.Vector);
|
---|
346 | return new EvaluationResult(vvFunc(lhsVector, rhsVector));
|
---|
347 | }
|
---|
348 | }
|
---|
349 | return EvaluationResult.NaN;
|
---|
350 | }
|
---|
351 |
|
---|
352 | private static EvaluationResult FunctionApply(EvaluationResult val,
|
---|
353 | Func<double, double> sFunc = null,
|
---|
354 | Func<DoubleVector, DoubleVector> vFunc = null) {
|
---|
355 | if (val.IsScalar && sFunc != null) return new EvaluationResult(sFunc(val.Scalar));
|
---|
356 | if (val.IsVector && vFunc != null) return new EvaluationResult(vFunc(val.Vector));
|
---|
357 | return EvaluationResult.NaN;
|
---|
358 | }
|
---|
359 | private static EvaluationResult AggregateApply(EvaluationResult val,
|
---|
360 | Func<double, double> sFunc = null,
|
---|
361 | Func<DoubleVector, double> vFunc = null) {
|
---|
362 | if (val.IsScalar && sFunc != null) return new EvaluationResult(sFunc(val.Scalar));
|
---|
363 | if (val.IsVector && vFunc != null) return new EvaluationResult(vFunc(val.Vector));
|
---|
364 | return EvaluationResult.NaN;
|
---|
365 | }
|
---|
366 |
|
---|
367 | private static EvaluationResult WindowedAggregateApply(EvaluationResult val, WindowedSymbolTreeNode node,
|
---|
368 | Func<double, double> sFunc = null,
|
---|
369 | Func<DoubleVector, double> vFunc = null) {
|
---|
370 |
|
---|
371 | // Parameters are interpreted as start and end with wrapping
|
---|
372 | var start = node.Offset;
|
---|
373 | var end = node.Length;
|
---|
374 |
|
---|
375 | DoubleVector SubVector(DoubleVector v) {
|
---|
376 | int startIdx = (int)Math.Round(start * v.Count);
|
---|
377 | int endIdx = (int)Math.Round(end * v.Count);
|
---|
378 | int size = v.Count;
|
---|
379 | if (startIdx < endIdx) {
|
---|
380 | return v.SubVector(startIdx, count: endIdx - startIdx);
|
---|
381 | } else { // wrap around
|
---|
382 | var resultVector = DoubleVector.Build.Dense(size: size - (startIdx - endIdx));
|
---|
383 | v.CopySubVectorTo(resultVector, startIdx, 0, size - startIdx); // copy [startIdx:size] to [0:size-startIdx]
|
---|
384 | v.CopySubVectorTo(resultVector, 0, size - startIdx, endIdx); // copy [0:endIdx] to [size-startIdx:size]
|
---|
385 | return resultVector;
|
---|
386 | }
|
---|
387 | }
|
---|
388 |
|
---|
389 | if (val.IsScalar && sFunc != null) return new EvaluationResult(sFunc(val.Scalar));
|
---|
390 | if (val.IsVector && vFunc != null) return new EvaluationResult(vFunc(SubVector(val.Vector)));
|
---|
391 | return EvaluationResult.NaN;
|
---|
392 | }
|
---|
393 | private static EvaluationResult WindowedFunctionApply(EvaluationResult val, IWindowedSymbolTreeNode node,
|
---|
394 | Func<double, double> sFunc = null,
|
---|
395 | Func<DoubleVector, DoubleVector> vFunc = null) {
|
---|
396 | // Parameters are interpreted as start and end with wrapping
|
---|
397 | var start = node.Offset;
|
---|
398 | var end = node.Length;
|
---|
399 |
|
---|
400 | DoubleVector SubVector(DoubleVector v) {
|
---|
401 | int startIdx = (int)Math.Round(start * v.Count);
|
---|
402 | int endIdx = (int)Math.Round(end * v.Count);
|
---|
403 | int size = v.Count;
|
---|
404 | if (startIdx < endIdx) {
|
---|
405 | return v.SubVector(startIdx, count: endIdx - startIdx);
|
---|
406 | } else { // wrap around
|
---|
407 | var resultVector = DoubleVector.Build.Dense(size: size - (startIdx - endIdx));
|
---|
408 | v.CopySubVectorTo(resultVector, startIdx, 0, size - startIdx); // copy [startIdx:size] to [0:size-startIdx]
|
---|
409 | v.CopySubVectorTo(resultVector, 0, size - startIdx, endIdx); // copy [0:endIdx] to [size-startIdx:size]
|
---|
410 | return resultVector;
|
---|
411 | }
|
---|
412 | }
|
---|
413 |
|
---|
414 | if (val.IsScalar && sFunc != null) return new EvaluationResult(sFunc(val.Scalar));
|
---|
415 | if (val.IsVector && vFunc != null) return new EvaluationResult(vFunc(SubVector(val.Vector)));
|
---|
416 | return EvaluationResult.NaN;
|
---|
417 | }
|
---|
418 |
|
---|
419 | private static EvaluationResult AggregateMultipleApply(EvaluationResult lhs, EvaluationResult rhs,
|
---|
420 | Func<DoubleVector, DoubleVector, (DoubleVector, DoubleVector)> lengthStrategy,
|
---|
421 | Func<double, double, double> ssFunc = null,
|
---|
422 | Func<double, DoubleVector, double> svFunc = null,
|
---|
423 | Func<DoubleVector, double, double> vsFunc = null,
|
---|
424 | Func<DoubleVector, DoubleVector, double> vvFunc = null) {
|
---|
425 | if (lhs.IsScalar && rhs.IsScalar && ssFunc != null) return new EvaluationResult(ssFunc(lhs.Scalar, rhs.Scalar));
|
---|
426 | if (lhs.IsScalar && rhs.IsVector && svFunc != null) return new EvaluationResult(svFunc(lhs.Scalar, rhs.Vector));
|
---|
427 | if (lhs.IsVector && rhs.IsScalar && vsFunc != null) return new EvaluationResult(vsFunc(lhs.Vector, rhs.Scalar));
|
---|
428 | if (lhs.IsVector && rhs.IsVector && vvFunc != null) {
|
---|
429 | if (lhs.Vector.Count == rhs.Vector.Count) {
|
---|
430 | return new EvaluationResult(vvFunc(lhs.Vector, rhs.Vector));
|
---|
431 | } else {
|
---|
432 | var (lhsVector, rhsVector) = lengthStrategy(lhs.Vector, rhs.Vector);
|
---|
433 | return new EvaluationResult(vvFunc(lhsVector, rhsVector));
|
---|
434 | }
|
---|
435 | }
|
---|
436 | return EvaluationResult.NaN;
|
---|
437 | }
|
---|
438 |
|
---|
439 | public virtual Type GetNodeType(ISymbolicExpressionTreeNode node) {
|
---|
440 | if (node.DataType != null)
|
---|
441 | return node.DataType;
|
---|
442 |
|
---|
443 | if (AggregationSymbols.Contains(node.Symbol.GetType()))
|
---|
444 | return typeof(double);
|
---|
445 |
|
---|
446 | var argumentTypes = node.Subtrees.Select(GetNodeType);
|
---|
447 | if (argumentTypes.Any(t => t == typeof(DoubleVector)))
|
---|
448 | return typeof(DoubleVector);
|
---|
449 |
|
---|
450 | return typeof(double);
|
---|
451 | }
|
---|
452 |
|
---|
453 |
|
---|
454 | public virtual EvaluationResult Evaluate(IDataset dataset, ref int row, InterpreterState state,
|
---|
455 | IDictionary<ISymbolicExpressionTreeNode, EvaluationResult> traceDict = null) {
|
---|
456 |
|
---|
457 | void TraceEvaluation(Instruction instr, EvaluationResult result) {
|
---|
458 | traceDict?.Add(instr.dynamicNode, result);
|
---|
459 | }
|
---|
460 |
|
---|
461 | Instruction currentInstr = state.NextInstruction();
|
---|
462 | switch (currentInstr.opCode) {
|
---|
463 | case OpCodes.Add: {
|
---|
464 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
465 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
466 | var op = Evaluate(dataset, ref row, state, traceDict);
|
---|
467 | cur = ArithmeticApply(cur, op,
|
---|
468 | (lhs, rhs) => ApplyVectorLengthStrategy(DifferentVectorLengthStrategy, lhs, rhs, 0.0),
|
---|
469 | (s1, s2) => s1 + s2,
|
---|
470 | (s1, v2) => s1 + v2,
|
---|
471 | (v1, s2) => v1 + s2,
|
---|
472 | (v1, v2) => v1 + v2);
|
---|
473 | }
|
---|
474 | TraceEvaluation(currentInstr, cur);
|
---|
475 | return cur;
|
---|
476 | }
|
---|
477 | case OpCodes.Sub: {
|
---|
478 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
479 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
480 | var op = Evaluate(dataset, ref row, state, traceDict);
|
---|
481 | cur = ArithmeticApply(cur, op,
|
---|
482 | (lhs, rhs) => ApplyVectorLengthStrategy(DifferentVectorLengthStrategy, lhs, rhs, 0.0),
|
---|
483 | (s1, s2) => s1 - s2,
|
---|
484 | (s1, v2) => s1 - v2,
|
---|
485 | (v1, s2) => v1 - s2,
|
---|
486 | (v1, v2) => v1 - v2);
|
---|
487 | }
|
---|
488 | if (currentInstr.nArguments == 1)
|
---|
489 | cur = FunctionApply(cur,
|
---|
490 | s => -s,
|
---|
491 | v => -v);
|
---|
492 | TraceEvaluation(currentInstr, cur);
|
---|
493 | return cur;
|
---|
494 | }
|
---|
495 | case OpCodes.Mul: {
|
---|
496 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
497 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
498 | var op = Evaluate(dataset, ref row, state, traceDict);
|
---|
499 | cur = ArithmeticApply(cur, op,
|
---|
500 | (lhs, rhs) => ApplyVectorLengthStrategy(DifferentVectorLengthStrategy, lhs, rhs, 1.0),
|
---|
501 | (s1, s2) => s1 * s2,
|
---|
502 | (s1, v2) => s1 * v2,
|
---|
503 | (v1, s2) => v1 * s2,
|
---|
504 | (v1, v2) => v1.PointwiseMultiply(v2));
|
---|
505 | }
|
---|
506 | TraceEvaluation(currentInstr, cur);
|
---|
507 | return cur;
|
---|
508 | }
|
---|
509 | case OpCodes.Div: {
|
---|
510 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
511 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
512 | var op = Evaluate(dataset, ref row, state, traceDict);
|
---|
513 | cur = ArithmeticApply(cur, op,
|
---|
514 | (lhs, rhs) => ApplyVectorLengthStrategy(DifferentVectorLengthStrategy, lhs, rhs, 1.0),
|
---|
515 | (s1, s2) => s1 / s2,
|
---|
516 | (s1, v2) => s1 / v2,
|
---|
517 | (v1, s2) => v1 / s2,
|
---|
518 | (v1, v2) => v1 / v2);
|
---|
519 | }
|
---|
520 | if (currentInstr.nArguments == 1)
|
---|
521 | cur = FunctionApply(cur,
|
---|
522 | s => 1 / s,
|
---|
523 | v => 1 / v);
|
---|
524 | TraceEvaluation(currentInstr, cur);
|
---|
525 | return cur;
|
---|
526 | }
|
---|
527 | case OpCodes.Absolute: {
|
---|
528 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
529 | cur = FunctionApply(cur, Math.Abs, DoubleVector.Abs);
|
---|
530 | TraceEvaluation(currentInstr, cur);
|
---|
531 | return cur;
|
---|
532 | }
|
---|
533 | case OpCodes.Tanh: {
|
---|
534 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
535 | cur = FunctionApply(cur, Math.Tanh, DoubleVector.Tanh);
|
---|
536 | TraceEvaluation(currentInstr, cur);
|
---|
537 | return cur;
|
---|
538 | }
|
---|
539 | case OpCodes.Cos: {
|
---|
540 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
541 | cur = FunctionApply(cur, Math.Cos, DoubleVector.Cos);
|
---|
542 | TraceEvaluation(currentInstr, cur);
|
---|
543 | return cur;
|
---|
544 | }
|
---|
545 | case OpCodes.Sin: {
|
---|
546 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
547 | cur = FunctionApply(cur, Math.Sin, DoubleVector.Sin);
|
---|
548 | TraceEvaluation(currentInstr, cur);
|
---|
549 | return cur;
|
---|
550 | }
|
---|
551 | case OpCodes.Tan: {
|
---|
552 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
553 | cur = FunctionApply(cur, Math.Tan, DoubleVector.Tan);
|
---|
554 | TraceEvaluation(currentInstr, cur);
|
---|
555 | return cur;
|
---|
556 | }
|
---|
557 | case OpCodes.Square: {
|
---|
558 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
559 | cur = FunctionApply(cur,
|
---|
560 | s => Math.Pow(s, 2),
|
---|
561 | v => v.PointwisePower(2));
|
---|
562 | TraceEvaluation(currentInstr, cur);
|
---|
563 | return cur;
|
---|
564 | }
|
---|
565 | case OpCodes.Cube: {
|
---|
566 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
567 | cur = FunctionApply(cur,
|
---|
568 | s => Math.Pow(s, 3),
|
---|
569 | v => v.PointwisePower(3));
|
---|
570 | TraceEvaluation(currentInstr, cur);
|
---|
571 | return cur;
|
---|
572 | }
|
---|
573 | case OpCodes.Power: {
|
---|
574 | var x = Evaluate(dataset, ref row, state, traceDict);
|
---|
575 | var y = Evaluate(dataset, ref row, state, traceDict);
|
---|
576 | var cur = ArithmeticApply(x, y,
|
---|
577 | (lhs, rhs) => lhs.Count < rhs.Count
|
---|
578 | ? CutLonger(lhs, rhs)
|
---|
579 | : ApplyVectorLengthStrategy(DifferentVectorLengthStrategy, lhs, rhs, 1.0),
|
---|
580 | (s1, s2) => Math.Pow(s1, Math.Round(s2)),
|
---|
581 | (s1, v2) => DoubleVector.Build.Dense(v2.Count, s1).PointwisePower(DoubleVector.Round(v2)),
|
---|
582 | (v1, s2) => v1.PointwisePower(Math.Round(s2)),
|
---|
583 | (v1, v2) => v1.PointwisePower(DoubleVector.Round(v2)));
|
---|
584 | TraceEvaluation(currentInstr, cur);
|
---|
585 | return cur;
|
---|
586 | }
|
---|
587 | case OpCodes.SquareRoot: {
|
---|
588 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
589 | cur = FunctionApply(cur,
|
---|
590 | s => Math.Sqrt(s),
|
---|
591 | v => DoubleVector.Sqrt(v));
|
---|
592 | TraceEvaluation(currentInstr, cur);
|
---|
593 | return cur;
|
---|
594 | }
|
---|
595 | case OpCodes.CubeRoot: {
|
---|
596 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
597 | cur = FunctionApply(cur,
|
---|
598 | s => s < 0 ? -Math.Pow(-s, 1.0 / 3.0) : Math.Pow(s, 1.0 / 3.0),
|
---|
599 | v => v.Map(s => s < 0 ? -Math.Pow(-s, 1.0 / 3.0) : Math.Pow(s, 1.0 / 3.0)));
|
---|
600 | TraceEvaluation(currentInstr, cur);
|
---|
601 | return cur;
|
---|
602 | }
|
---|
603 | case OpCodes.Root: {
|
---|
604 | var x = Evaluate(dataset, ref row, state, traceDict);
|
---|
605 | var y = Evaluate(dataset, ref row, state, traceDict);
|
---|
606 | var cur = ArithmeticApply(x, y,
|
---|
607 | (lhs, rhs) => lhs.Count < rhs.Count
|
---|
608 | ? CutLonger(lhs, rhs)
|
---|
609 | : ApplyVectorLengthStrategy(DifferentVectorLengthStrategy, lhs, rhs, 1.0),
|
---|
610 | (s1, s2) => Math.Pow(s1, 1.0 / Math.Round(s2)),
|
---|
611 | (s1, v2) => DoubleVector.Build.Dense(v2.Count, s1).PointwisePower(1.0 / DoubleVector.Round(v2)),
|
---|
612 | (v1, s2) => v1.PointwisePower(1.0 / Math.Round(s2)),
|
---|
613 | (v1, v2) => v1.PointwisePower(1.0 / DoubleVector.Round(v2)));
|
---|
614 | TraceEvaluation(currentInstr, cur);
|
---|
615 | return cur;
|
---|
616 | }
|
---|
617 | case OpCodes.Exp: {
|
---|
618 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
619 | cur = FunctionApply(cur,
|
---|
620 | s => Math.Exp(s),
|
---|
621 | v => DoubleVector.Exp(v));
|
---|
622 | TraceEvaluation(currentInstr, cur);
|
---|
623 | return cur;
|
---|
624 | }
|
---|
625 | case OpCodes.Log: {
|
---|
626 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
627 | cur = FunctionApply(cur,
|
---|
628 | s => Math.Log(s),
|
---|
629 | v => DoubleVector.Log(v));
|
---|
630 | TraceEvaluation(currentInstr, cur);
|
---|
631 | return cur;
|
---|
632 | }
|
---|
633 | case OpCodes.Sum: {
|
---|
634 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
635 | cur = AggregateApply(cur,
|
---|
636 | s => s,
|
---|
637 | v => v.Sum());
|
---|
638 | TraceEvaluation(currentInstr, cur);
|
---|
639 | return cur;
|
---|
640 | }
|
---|
641 | case OpCodes.Mean: {
|
---|
642 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
643 | cur = AggregateApply(cur,
|
---|
644 | s => s,
|
---|
645 | v => Statistics.Mean(v));
|
---|
646 | TraceEvaluation(currentInstr, cur);
|
---|
647 | return cur;
|
---|
648 | }
|
---|
649 | case OpCodes.StandardDeviation: {
|
---|
650 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
651 | cur = AggregateApply(cur,
|
---|
652 | s => 0,
|
---|
653 | v => Statistics.PopulationStandardDeviation(v));
|
---|
654 | TraceEvaluation(currentInstr, cur);
|
---|
655 | return cur;
|
---|
656 | }
|
---|
657 | case OpCodes.Length: {
|
---|
658 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
659 | cur = AggregateApply(cur,
|
---|
660 | s => 1,
|
---|
661 | v => v.Count);
|
---|
662 | TraceEvaluation(currentInstr, cur);
|
---|
663 | return cur;
|
---|
664 | }
|
---|
665 | case OpCodes.Min: {
|
---|
666 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
667 | cur = AggregateApply(cur,
|
---|
668 | s => s,
|
---|
669 | v => Statistics.Minimum(v));
|
---|
670 | TraceEvaluation(currentInstr, cur);
|
---|
671 | return cur;
|
---|
672 | }
|
---|
673 | case OpCodes.Max: {
|
---|
674 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
675 | cur = AggregateApply(cur,
|
---|
676 | s => s,
|
---|
677 | v => Statistics.Maximum(v));
|
---|
678 | TraceEvaluation(currentInstr, cur);
|
---|
679 | return cur;
|
---|
680 | }
|
---|
681 | case OpCodes.Variance: {
|
---|
682 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
683 | cur = AggregateApply(cur,
|
---|
684 | s => 0,
|
---|
685 | v => Statistics.PopulationVariance(v));
|
---|
686 | TraceEvaluation(currentInstr, cur);
|
---|
687 | return cur;
|
---|
688 | }
|
---|
689 | case OpCodes.Skewness: {
|
---|
690 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
691 | cur = AggregateApply(cur,
|
---|
692 | s => double.NaN,
|
---|
693 | v => Statistics.PopulationSkewness(v));
|
---|
694 | TraceEvaluation(currentInstr, cur);
|
---|
695 | return cur;
|
---|
696 | }
|
---|
697 | case OpCodes.Kurtosis: {
|
---|
698 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
699 | cur = AggregateApply(cur,
|
---|
700 | s => double.NaN,
|
---|
701 | v => Statistics.PopulationKurtosis(v));
|
---|
702 | TraceEvaluation(currentInstr, cur);
|
---|
703 | return cur;
|
---|
704 | }
|
---|
705 | case OpCodes.EuclideanDistance: {
|
---|
706 | var x1 = Evaluate(dataset, ref row, state, traceDict);
|
---|
707 | var x2 = Evaluate(dataset, ref row, state, traceDict);
|
---|
708 | var cur = AggregateMultipleApply(x1, x2,
|
---|
709 | (lhs, rhs) => ApplyVectorLengthStrategy(DifferentVectorLengthStrategy, lhs, rhs, 0.0),
|
---|
710 | (s1, s2) => s1 - s2,
|
---|
711 | (s1, v2) => Math.Sqrt((s1 - v2).PointwisePower(2).Sum()),
|
---|
712 | (v1, s2) => Math.Sqrt((v1 - s2).PointwisePower(2).Sum()),
|
---|
713 | (v1, v2) => Math.Sqrt((v1 - v2).PointwisePower(2).Sum()));
|
---|
714 | TraceEvaluation(currentInstr, cur);
|
---|
715 | return cur;
|
---|
716 | }
|
---|
717 | case OpCodes.Covariance: {
|
---|
718 | var x1 = Evaluate(dataset, ref row, state, traceDict);
|
---|
719 | var x2 = Evaluate(dataset, ref row, state, traceDict);
|
---|
720 | var cur = AggregateMultipleApply(x1, x2,
|
---|
721 | (lhs, rhs) => ApplyVectorLengthStrategy(DifferentVectorLengthStrategy, lhs, rhs, 0.0),
|
---|
722 | (s1, s2) => 0,
|
---|
723 | (s1, v2) => 0,
|
---|
724 | (v1, s2) => 0,
|
---|
725 | (v1, v2) => Statistics.PopulationCovariance(v1, v2));
|
---|
726 | TraceEvaluation(currentInstr, cur);
|
---|
727 | return cur;
|
---|
728 | }
|
---|
729 | case OpCodes.SubVector: {
|
---|
730 | DoubleVector SubVector(DoubleVector v , double start, double end) {
|
---|
731 | int Mod(int x, int m) => (x % m + m) % m;
|
---|
732 | int startIdx = Mod((int)Math.Round(start * v.Count), v.Count);
|
---|
733 | int endIdx = Mod((int)Math.Round(end * v.Count), v.Count);
|
---|
734 | int size = v.Count;
|
---|
735 | if (startIdx < endIdx) {
|
---|
736 | return v.SubVector(startIdx, count: endIdx - startIdx);
|
---|
737 | } else { // wrap around
|
---|
738 | var resultVector = DoubleVector.Build.Dense(size: size - (startIdx - endIdx));
|
---|
739 | v.CopySubVectorTo(resultVector, startIdx, 0, size - startIdx); // copy [startIdx:size] to [0:size-startIdx]
|
---|
740 | v.CopySubVectorTo(resultVector, 0, size - startIdx, endIdx); // copy [0:endIdx] to [size-startIdx:size]
|
---|
741 | return resultVector;
|
---|
742 | }
|
---|
743 | }
|
---|
744 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
745 | TraceEvaluation(currentInstr, cur);
|
---|
746 | return FunctionApply(cur,
|
---|
747 | s => s,
|
---|
748 | v => {
|
---|
749 | var node = (IWindowedSymbolTreeNode)currentInstr.dynamicNode;
|
---|
750 | return SubVector(v, node.Offset, node.Length);
|
---|
751 | });
|
---|
752 | }
|
---|
753 | case OpCodes.SubVectorSubtree: {
|
---|
754 | DoubleVector SubVector(DoubleVector v, double start, double end) {
|
---|
755 | int Mod(int x, int m) => (x % m + m) % m;
|
---|
756 | int startIdx = Mod((int)Math.Round(start * v.Count), v.Count);
|
---|
757 | int endIdx = Mod((int)Math.Round(end * v.Count), v.Count);
|
---|
758 | int size = v.Count;
|
---|
759 | if (startIdx < endIdx) {
|
---|
760 | return v.SubVector(startIdx, count: endIdx - startIdx);
|
---|
761 | } else { // wrap around
|
---|
762 | var resultVector = DoubleVector.Build.Dense(size: size - (startIdx - endIdx));
|
---|
763 | v.CopySubVectorTo(resultVector, startIdx, 0, size - startIdx); // copy [startIdx:size] to [0:size-startIdx]
|
---|
764 | v.CopySubVectorTo(resultVector, 0, size - startIdx, endIdx); // copy [0:endIdx] to [size-startIdx:size]
|
---|
765 | return resultVector;
|
---|
766 | }
|
---|
767 | }
|
---|
768 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
769 | var offset = Evaluate(dataset, ref row, state, traceDict);
|
---|
770 | var length = Evaluate(dataset, ref row, state, traceDict);
|
---|
771 | TraceEvaluation(currentInstr, cur);
|
---|
772 | return FunctionApply(cur,
|
---|
773 | s => s,
|
---|
774 | v => SubVector(v, offset.Scalar, length.Scalar)
|
---|
775 | );
|
---|
776 | }
|
---|
777 | case OpCodes.Variable: {
|
---|
778 | if (row < 0 || row >= dataset.Rows) return EvaluationResult.NaN;
|
---|
779 | var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode;
|
---|
780 | if (currentInstr.data is IList<double> doubleList) {
|
---|
781 | var cur = new EvaluationResult(doubleList[row] * variableTreeNode.Weight);
|
---|
782 | TraceEvaluation(currentInstr, cur);
|
---|
783 | return cur;
|
---|
784 | }
|
---|
785 | if (currentInstr.data is IList<DoubleVector> doubleVectorList) {
|
---|
786 | var cur = new EvaluationResult(doubleVectorList[row] * variableTreeNode.Weight);
|
---|
787 | TraceEvaluation(currentInstr, cur);
|
---|
788 | return cur;
|
---|
789 | }
|
---|
790 | throw new NotSupportedException($"Unsupported type of variable: {currentInstr.data.GetType().GetPrettyName()}");
|
---|
791 | }
|
---|
792 | case OpCodes.BinaryFactorVariable: {
|
---|
793 | if (row < 0 || row >= dataset.Rows) return EvaluationResult.NaN;
|
---|
794 | var factorVarTreeNode = currentInstr.dynamicNode as BinaryFactorVariableTreeNode;
|
---|
795 | var cur = new EvaluationResult(((IList<string>)currentInstr.data)[row] == factorVarTreeNode.VariableValue ? factorVarTreeNode.Weight : 0);
|
---|
796 | TraceEvaluation(currentInstr, cur);
|
---|
797 | return cur;
|
---|
798 | }
|
---|
799 | case OpCodes.FactorVariable: {
|
---|
800 | if (row < 0 || row >= dataset.Rows) return EvaluationResult.NaN;
|
---|
801 | var factorVarTreeNode = currentInstr.dynamicNode as FactorVariableTreeNode;
|
---|
802 | var cur = new EvaluationResult(factorVarTreeNode.GetValue(((IList<string>)currentInstr.data)[row]));
|
---|
803 | TraceEvaluation(currentInstr, cur);
|
---|
804 | return cur;
|
---|
805 | }
|
---|
806 | case OpCodes.Constant: {
|
---|
807 | var constTreeNode = (ConstantTreeNode)currentInstr.dynamicNode;
|
---|
808 | var cur = new EvaluationResult(constTreeNode.Value);
|
---|
809 | TraceEvaluation(currentInstr, cur);
|
---|
810 | return cur;
|
---|
811 | }
|
---|
812 |
|
---|
813 | #region Time Series Symbols
|
---|
814 | case OpCodes.Median: {
|
---|
815 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
816 | cur = AggregateApply(cur,
|
---|
817 | s => s,
|
---|
818 | v => Statistics.Median(v));
|
---|
819 | TraceEvaluation(currentInstr, cur);
|
---|
820 | return cur;
|
---|
821 | }
|
---|
822 | case OpCodes.Quantile: {
|
---|
823 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
824 | var q = Evaluate(dataset, ref row, state, traceDict);
|
---|
825 | cur = AggregateApply(cur,
|
---|
826 | s => s,
|
---|
827 | v => Statistics.Quantile(v, q.Scalar));
|
---|
828 | TraceEvaluation(currentInstr, cur);
|
---|
829 | return cur;
|
---|
830 | }
|
---|
831 |
|
---|
832 | case OpCodes.AbsoluteEnergy: {
|
---|
833 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
834 | cur = AggregateApply(cur,
|
---|
835 | s => s * s,
|
---|
836 | v => v.PointwisePower(2.0).Sum());
|
---|
837 | TraceEvaluation(currentInstr, cur);
|
---|
838 | return cur;
|
---|
839 | }
|
---|
840 |
|
---|
841 | case OpCodes.BinnedEntropy: {
|
---|
842 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
843 | var m = Evaluate(dataset, ref row, state, traceDict);
|
---|
844 | cur = AggregateApply(cur,
|
---|
845 | s => 0,
|
---|
846 | v => {
|
---|
847 | int bins = Math.Max((int)Math.Round(m.Scalar), 1);
|
---|
848 | double minValue = v.Minimum();
|
---|
849 | double maxValue = v.Maximum();
|
---|
850 | double intervalWidth = (maxValue - minValue) / bins;
|
---|
851 | int totalValues = v.Count;
|
---|
852 | double sum = 0;
|
---|
853 | for (int i = 0; i < Math.Max(bins, v.Count); i++) {
|
---|
854 | double binMin = minValue * i;
|
---|
855 | double binMax = binMin + intervalWidth;
|
---|
856 | double countBin = v.Map(e => (e > binMin && e < binMax) ? 1.0 : 0.0).Sum();
|
---|
857 | double percBin = countBin / totalValues;
|
---|
858 | sum += percBin * Math.Log(percBin);
|
---|
859 | }
|
---|
860 |
|
---|
861 | return sum;
|
---|
862 | });
|
---|
863 | TraceEvaluation(currentInstr, cur);
|
---|
864 | return cur;
|
---|
865 | }
|
---|
866 | case OpCodes.HasLargeStandardDeviation: {
|
---|
867 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
868 | cur = AggregateApply(cur,
|
---|
869 | s => 0,
|
---|
870 | v => Statistics.PopulationStandardDeviation(v) > (Statistics.Maximum(v) - Statistics.Minimum(v)) / 2 ? 1.0 : 0.0);
|
---|
871 | TraceEvaluation(currentInstr, cur);
|
---|
872 | return cur;
|
---|
873 | }
|
---|
874 | case OpCodes.HasVarianceLargerThanStd: {
|
---|
875 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
876 | cur = AggregateApply(cur,
|
---|
877 | s => 0,
|
---|
878 | v => Statistics.PopulationVariance(v) > Statistics.StandardDeviation(v) ? 1.0 : 0.0);
|
---|
879 | TraceEvaluation(currentInstr, cur);
|
---|
880 | return cur;
|
---|
881 | }
|
---|
882 | case OpCodes.IsSymmetricLooking: {
|
---|
883 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
884 | cur = AggregateApply(cur,
|
---|
885 | s => 0,
|
---|
886 | v => Math.Abs(Statistics.Mean(v) - Statistics.Median(v)) < (Statistics.Maximum(v) - Statistics.Minimum(v)) / 2 ? 1.0 : 0.0);
|
---|
887 | TraceEvaluation(currentInstr, cur);
|
---|
888 | return cur;
|
---|
889 | }
|
---|
890 | case OpCodes.NumberDataPointsAboveMean: {
|
---|
891 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
892 | cur = AggregateApply(cur,
|
---|
893 | s => 0,
|
---|
894 | v => {
|
---|
895 | double mean = Statistics.Mean(v);
|
---|
896 | return v.Map(e => e > mean ? 1.0 : 0.0).Sum();
|
---|
897 | });
|
---|
898 | TraceEvaluation(currentInstr, cur);
|
---|
899 | return cur;
|
---|
900 | }
|
---|
901 | case OpCodes.NumberDataPointsAboveMedian: {
|
---|
902 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
903 | cur = AggregateApply(cur,
|
---|
904 | s => 0,
|
---|
905 | v => {
|
---|
906 | double median = Statistics.Median(v);
|
---|
907 | return v.Map(e => e > median ? 1.0 : 0.0).Sum();
|
---|
908 | });
|
---|
909 | TraceEvaluation(currentInstr, cur);
|
---|
910 | return cur;
|
---|
911 | }
|
---|
912 | case OpCodes.NumberDataPointsBelowMean: {
|
---|
913 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
914 | cur = AggregateApply(cur,
|
---|
915 | s => 0,
|
---|
916 | v => {
|
---|
917 | double mean = Statistics.Mean(v);
|
---|
918 | return v.Map(e => e < mean ? 1.0 : 0.0).Sum();
|
---|
919 | });
|
---|
920 | TraceEvaluation(currentInstr, cur);
|
---|
921 | return cur;
|
---|
922 | }
|
---|
923 | case OpCodes.NumberDataPointsBelowMedian: {
|
---|
924 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
925 | cur = AggregateApply(cur,
|
---|
926 | s => 0,
|
---|
927 | v => {
|
---|
928 | double median = Statistics.Median(v);
|
---|
929 | return v.Map(e => e < median ? 1.0 : 0.0).Sum();
|
---|
930 | });
|
---|
931 | TraceEvaluation(currentInstr, cur);
|
---|
932 | return cur;
|
---|
933 | }
|
---|
934 |
|
---|
935 | case OpCodes.ArimaModelCoefficients: {
|
---|
936 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
937 | var i = Evaluate(dataset, ref row, state, traceDict);
|
---|
938 | var k = Evaluate(dataset, ref row, state, traceDict);
|
---|
939 | cur = AggregateApply(cur,
|
---|
940 | s => 0,
|
---|
941 | v => throw new NotImplementedException(""));
|
---|
942 | TraceEvaluation(currentInstr, cur);
|
---|
943 | return cur;
|
---|
944 | }
|
---|
945 | case OpCodes.ContinuousWaveletTransformationCoefficients: {
|
---|
946 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
947 | var a = Evaluate(dataset, ref row, state, traceDict);
|
---|
948 | var b = Evaluate(dataset, ref row, state, traceDict);
|
---|
949 | cur = AggregateApply(cur,
|
---|
950 | s => 0,
|
---|
951 | v => throw new NotImplementedException(""));
|
---|
952 | TraceEvaluation(currentInstr, cur);
|
---|
953 | return cur;
|
---|
954 | }
|
---|
955 | case OpCodes.FastFourierTransformationCoefficient: {
|
---|
956 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
957 | var k = Evaluate(dataset, ref row, state, traceDict);
|
---|
958 | cur = AggregateApply(cur,
|
---|
959 | s => 0,
|
---|
960 | v => throw new NotImplementedException(""));
|
---|
961 | TraceEvaluation(currentInstr, cur);
|
---|
962 | return cur;
|
---|
963 | }
|
---|
964 | case OpCodes.FirstIndexMax: {
|
---|
965 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
966 | cur = AggregateApply(cur,
|
---|
967 | s => 0,
|
---|
968 | v => (double)v.MaximumIndex() / v.Count);
|
---|
969 | TraceEvaluation(currentInstr, cur);
|
---|
970 | return cur;
|
---|
971 | }
|
---|
972 | case OpCodes.FirstIndexMin: {
|
---|
973 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
974 | cur = AggregateApply(cur,
|
---|
975 | s => 0,
|
---|
976 | v => (double)v.MinimumIndex() / v.Count);
|
---|
977 | TraceEvaluation(currentInstr, cur);
|
---|
978 | return cur;
|
---|
979 | }
|
---|
980 | case OpCodes.LastIndexMax: {
|
---|
981 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
982 | cur = AggregateApply(cur,
|
---|
983 | s => 0,
|
---|
984 | v => (double)(v.Count - DoubleVector.Build.DenseOfEnumerable(v.Reverse()).MaximumIndex()) / v.Count);
|
---|
985 |
|
---|
986 | TraceEvaluation(currentInstr, cur);
|
---|
987 | return cur;
|
---|
988 | }
|
---|
989 | case OpCodes.LastIndexMin: {
|
---|
990 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
991 | cur = AggregateApply(cur,
|
---|
992 | s => 0,
|
---|
993 | v => (double)(v.Count - DoubleVector.Build.DenseOfEnumerable(v.Reverse()).MinimumIndex()) / v.Count);
|
---|
994 | TraceEvaluation(currentInstr, cur);
|
---|
995 | return cur;
|
---|
996 | }
|
---|
997 | case OpCodes.LongestStrikeAboveMean: {
|
---|
998 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
999 | cur = AggregateApply(cur,
|
---|
1000 | s => 0,
|
---|
1001 | v => LongestStrikeAbove(v, Statistics.Mean(v)));
|
---|
1002 | TraceEvaluation(currentInstr, cur);
|
---|
1003 | return cur;
|
---|
1004 | }
|
---|
1005 | case OpCodes.LongestStrikeAboveMedian: {
|
---|
1006 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1007 | cur = AggregateApply(cur,
|
---|
1008 | s => 0,
|
---|
1009 | v => LongestStrikeAbove(v, Statistics.Median(v)));
|
---|
1010 | TraceEvaluation(currentInstr, cur);
|
---|
1011 | return cur;
|
---|
1012 | }
|
---|
1013 | case OpCodes.LongestStrikeBelowMean: {
|
---|
1014 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1015 | cur = AggregateApply(cur,
|
---|
1016 | s => 0,
|
---|
1017 | v => LongestStrikeBelow(v, Statistics.Mean(v)));
|
---|
1018 | TraceEvaluation(currentInstr, cur);
|
---|
1019 | return cur;
|
---|
1020 | }
|
---|
1021 | case OpCodes.LongestStrikeBelowMedian: {
|
---|
1022 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1023 | cur = AggregateApply(cur,
|
---|
1024 | s => 0,
|
---|
1025 | v => LongestStrikeBelow(v, Statistics.Median(v)));
|
---|
1026 | TraceEvaluation(currentInstr, cur);
|
---|
1027 | return cur;
|
---|
1028 | }
|
---|
1029 | case OpCodes.LongestStrikePositive: {
|
---|
1030 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1031 | cur = AggregateApply(cur,
|
---|
1032 | s => 0,
|
---|
1033 | v => LongestStrikeAbove(v, 0));
|
---|
1034 | TraceEvaluation(currentInstr, cur);
|
---|
1035 | return cur;
|
---|
1036 | }
|
---|
1037 | case OpCodes.LongestStrikeNegative: {
|
---|
1038 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1039 | cur = AggregateApply(cur,
|
---|
1040 | s => 0,
|
---|
1041 | v => LongestStrikeAbove(v, 0));
|
---|
1042 | TraceEvaluation(currentInstr, cur);
|
---|
1043 | return cur;
|
---|
1044 | }
|
---|
1045 | case OpCodes.LongestStrikeZero: {
|
---|
1046 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1047 | cur = AggregateApply(cur,
|
---|
1048 | s => 0,
|
---|
1049 | v => LongestStrikeEqual(v, 0));
|
---|
1050 | TraceEvaluation(currentInstr, cur);
|
---|
1051 | return cur;
|
---|
1052 | }
|
---|
1053 | case OpCodes.MeanAbsoluteChange: {
|
---|
1054 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1055 | cur = AggregateApply(cur,
|
---|
1056 | s => 0,
|
---|
1057 | v => {
|
---|
1058 | double sum = 0.0;
|
---|
1059 | for (int i = 0; i < v.Count - 1; i++) {
|
---|
1060 | sum += Math.Abs(v[i + 1] - v[i]);
|
---|
1061 | }
|
---|
1062 |
|
---|
1063 | return sum / v.Count;
|
---|
1064 | });
|
---|
1065 | TraceEvaluation(currentInstr, cur);
|
---|
1066 | return cur;
|
---|
1067 | }
|
---|
1068 | case OpCodes.MeanAbsoluteChangeQuantiles: {
|
---|
1069 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1070 | var ql = Evaluate(dataset, ref row, state, traceDict);
|
---|
1071 | var qu = Evaluate(dataset, ref row, state, traceDict);
|
---|
1072 | cur = AggregateApply(cur,
|
---|
1073 | s => 0,
|
---|
1074 | v => {
|
---|
1075 | var lowerBound = Statistics.Quantile(v, ql.Scalar);
|
---|
1076 | var upperBound = Statistics.Quantile(v, qu.Scalar);
|
---|
1077 | var inBounds = v.Select(e => e > lowerBound && e < upperBound).ToList();
|
---|
1078 | double sum = 0.0;
|
---|
1079 | int count = 0;
|
---|
1080 | for (int i = 0; i < v.Count - 1; i++) {
|
---|
1081 | if (inBounds[i] && inBounds[i + 1]) {
|
---|
1082 | sum += Math.Abs(v[i + 1] - v[i]);
|
---|
1083 | count++;
|
---|
1084 | }
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 | return sum / count;
|
---|
1088 | });
|
---|
1089 | TraceEvaluation(currentInstr, cur);
|
---|
1090 | return cur;
|
---|
1091 | }
|
---|
1092 | case OpCodes.MeanAutocorrelation: {
|
---|
1093 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1094 | cur = AggregateApply(cur,
|
---|
1095 | s => 0,
|
---|
1096 | v => {
|
---|
1097 | double sum = 0.0;
|
---|
1098 | double mean = Statistics.Mean(v);
|
---|
1099 | for (int l = 0; l < v.Count; l++) {
|
---|
1100 | for (int i = 0; i < v.Count - l; i++) {
|
---|
1101 | sum += (v[i] - mean) * (v[i + l] - mean);
|
---|
1102 | }
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 | return sum / (v.Count - 1) / Statistics.PopulationVariance(v);
|
---|
1106 | });
|
---|
1107 | TraceEvaluation(currentInstr, cur);
|
---|
1108 | return cur;
|
---|
1109 | }
|
---|
1110 | case OpCodes.LaggedAutocorrelation: {
|
---|
1111 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1112 | var lVal = Evaluate(dataset, ref row, state, traceDict);
|
---|
1113 | cur = AggregateApply(cur,
|
---|
1114 | s => 0,
|
---|
1115 | v => {
|
---|
1116 | double sum = 0.0;
|
---|
1117 | int l = Math.Max((int)Math.Round(lVal.Scalar), 0);
|
---|
1118 | double mean = Statistics.Mean(v);
|
---|
1119 | for (int i = 0; i < v.Count - l; i++) {
|
---|
1120 | sum += (v[i] - mean) * (v[i + l] - mean);
|
---|
1121 | }
|
---|
1122 |
|
---|
1123 | return sum / Statistics.PopulationVariance(v);
|
---|
1124 | });
|
---|
1125 | TraceEvaluation(currentInstr, cur);
|
---|
1126 | return cur;
|
---|
1127 | }
|
---|
1128 | case OpCodes.MeanSecondDerivateCentral: {
|
---|
1129 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1130 | cur = AggregateApply(cur,
|
---|
1131 | s => 0,
|
---|
1132 | v => {
|
---|
1133 | double sum = 0.0;
|
---|
1134 | for (int i = 1; i < v.Count - 1; i++) {
|
---|
1135 | sum += (v[i - 1] - 2 * v[i] + v[i + 1]) / 2;
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 | return sum / (v.Count - 2);
|
---|
1139 | });
|
---|
1140 | TraceEvaluation(currentInstr, cur);
|
---|
1141 | return cur;
|
---|
1142 | }
|
---|
1143 | case OpCodes.NumberPeaksOfSize: {
|
---|
1144 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1145 | var l = Evaluate(dataset, ref row, state, traceDict);
|
---|
1146 | cur = AggregateApply(cur,
|
---|
1147 | s => 0,
|
---|
1148 | v => CountNumberOfPeaks(v, l.Scalar));
|
---|
1149 | TraceEvaluation(currentInstr, cur);
|
---|
1150 | return cur;
|
---|
1151 | }
|
---|
1152 | case OpCodes.LargeNumberOfPeaks: {
|
---|
1153 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1154 | var l = Evaluate(dataset, ref row, state, traceDict);
|
---|
1155 | var m = Evaluate(dataset, ref row, state, traceDict);
|
---|
1156 | cur = AggregateApply(cur,
|
---|
1157 | s => 0,
|
---|
1158 | v => CountNumberOfPeaks(v, l.Scalar) > m.Scalar ? 1.0 : 0.0);
|
---|
1159 | TraceEvaluation(currentInstr, cur);
|
---|
1160 | return cur;
|
---|
1161 | }
|
---|
1162 | case OpCodes.TimeReversalAsymmetryStatistic: {
|
---|
1163 | var cur = Evaluate(dataset, ref row, state, traceDict);
|
---|
1164 | var l = Evaluate(dataset, ref row, state, traceDict);
|
---|
1165 | cur = AggregateApply(cur,
|
---|
1166 | s => 0,
|
---|
1167 | v => {
|
---|
1168 | int lag = Math.Max((int)Math.Round(l.Scalar), 0);
|
---|
1169 | double sum = 0.0;
|
---|
1170 | for (int i = 0; i < v.Count - 2 * lag; i++) {
|
---|
1171 | sum += Math.Pow(v[i + 2 * lag], 2) * v[i + lag] - v[i + lag] * Math.Pow(v[i], 2);
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 | return sum / (v.Count - 2 * lag);
|
---|
1175 | });
|
---|
1176 | TraceEvaluation(currentInstr, cur);
|
---|
1177 | return cur;
|
---|
1178 | }
|
---|
1179 | #endregion
|
---|
1180 |
|
---|
1181 | default:
|
---|
1182 | throw new NotSupportedException($"Unsupported OpCode: {currentInstr.opCode}");
|
---|
1183 | }
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 | private static int LongestStrikeAbove(DoubleVector v, double threshold) {
|
---|
1187 | int longestStrike = 0, currentStrike = 0;
|
---|
1188 | for (int i = 0; i < v.Count; i++) {
|
---|
1189 | if (v[i] > threshold) {
|
---|
1190 | currentStrike++;
|
---|
1191 | longestStrike = Math.Max(longestStrike, currentStrike);
|
---|
1192 | } else
|
---|
1193 | currentStrike = 0;
|
---|
1194 | }
|
---|
1195 | return longestStrike;
|
---|
1196 | }
|
---|
1197 | private static int LongestStrikeBelow(DoubleVector v, double threshold) {
|
---|
1198 | int longestStrike = 0, currentStrike = 0;
|
---|
1199 | for (int i = 0; i < v.Count; i++) {
|
---|
1200 | if (v[i] < threshold) {
|
---|
1201 | currentStrike++;
|
---|
1202 | longestStrike = Math.Max(longestStrike, currentStrike);
|
---|
1203 | } else
|
---|
1204 | currentStrike = 0;
|
---|
1205 | }
|
---|
1206 | return longestStrike;
|
---|
1207 | }
|
---|
1208 |
|
---|
1209 | private static int LongestStrikeEqual(DoubleVector v, double value, double epsilon = double.Epsilon) {
|
---|
1210 | int longestStrike = 0, currentStrike = 0;
|
---|
1211 | for (int i = 0; i < v.Count; i++) {
|
---|
1212 | if (v[i].IsAlmost(epsilon)) {
|
---|
1213 | currentStrike++;
|
---|
1214 | longestStrike = Math.Max(longestStrike, currentStrike);
|
---|
1215 | } else
|
---|
1216 | currentStrike = 0;
|
---|
1217 | }
|
---|
1218 | return longestStrike;
|
---|
1219 | }
|
---|
1220 | private static int CountNumberOfPeaks(DoubleVector v, double heightDifference) {
|
---|
1221 | int count = 0;
|
---|
1222 | for (int i = 0; i < v.Count; i++) {
|
---|
1223 | bool largerThanPrev = i == 0 || v[i] > v[i - 1] + heightDifference;
|
---|
1224 | bool largerThanNext = i == v.Count - 1 || v[i] > v[i + 1] + heightDifference;
|
---|
1225 | if (largerThanPrev && largerThanNext)
|
---|
1226 | count++;
|
---|
1227 | }
|
---|
1228 | return count;
|
---|
1229 | }
|
---|
1230 | }
|
---|
1231 | } |
---|