Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionTreeVectorInterpreter.cs @ 17602

Last change on this file since 17602 was 17602, checked in by pfleck, 4 years ago

#3040

  • Changed stddev, variance, etc. to population variant
  • Added multiplicative simplifications for stdev and variance symbols
File size: 22.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Parameters;
30using HEAL.Attic;
31using MathNet.Numerics.Statistics;
32
33using DoubleVector = MathNet.Numerics.LinearAlgebra.Vector<double>;
34
35namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
36  [StorableType("DE68A1D9-5AFC-4DDD-AB62-29F3B8FC28E0")]
37  [Item("SymbolicDataAnalysisExpressionTreeVectorInterpreter", "Interpreter for symbolic expression trees including vector arithmetic.")]
38  public class SymbolicDataAnalysisExpressionTreeVectorInterpreter : ParameterizedNamedItem, ISymbolicDataAnalysisExpressionTreeInterpreter {
39    [StorableType("2612504E-AD5F-4AE2-B60E-98A5AB59E164")]
40    public enum Aggregation {
41      Mean,
42      Median,
43      Sum,
44      First,
45      NaN,
46      Exception
47    }
48
49    private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions";
50    private const string FinalAggregationParameterName = "FinalAggregation";
51
52    public override bool CanChangeName {
53      get { return false; }
54    }
55
56    public override bool CanChangeDescription {
57      get { return false; }
58    }
59
60    #region parameter properties
61    public IFixedValueParameter<IntValue> EvaluatedSolutionsParameter {
62      get { return (IFixedValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; }
63    }
64    public IFixedValueParameter<EnumValue<Aggregation>> FinalAggregationParameter {
65      get { return (IFixedValueParameter<EnumValue<Aggregation>>)Parameters[FinalAggregationParameterName]; }
66    }
67    #endregion
68
69    #region properties
70    public int EvaluatedSolutions {
71      get { return EvaluatedSolutionsParameter.Value.Value; }
72      set { EvaluatedSolutionsParameter.Value.Value = value; }
73    }
74    public Aggregation FinalAggregation {
75      get { return FinalAggregationParameter.Value.Value; }
76      set { FinalAggregationParameter.Value.Value = value; }
77    }
78    #endregion
79
80    [StorableConstructor]
81    protected SymbolicDataAnalysisExpressionTreeVectorInterpreter(StorableConstructorFlag _) : base(_) { }
82
83    protected SymbolicDataAnalysisExpressionTreeVectorInterpreter(SymbolicDataAnalysisExpressionTreeVectorInterpreter original, Cloner cloner)
84      : base(original, cloner) { }
85
86    public override IDeepCloneable Clone(Cloner cloner) {
87      return new SymbolicDataAnalysisExpressionTreeVectorInterpreter(this, cloner);
88    }
89
90    public SymbolicDataAnalysisExpressionTreeVectorInterpreter()
91      : this("SymbolicDataAnalysisExpressionTreeVectorInterpreter", "Interpreter for symbolic expression trees including vector arithmetic.") {
92    }
93
94    protected SymbolicDataAnalysisExpressionTreeVectorInterpreter(string name, string description)
95      : base(name, description) {
96      Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
97      Parameters.Add(new FixedValueParameter<EnumValue<Aggregation>>(FinalAggregationParameterName, "If root node of the expression tree results in a Vector it is aggregated according to this parameter", new EnumValue<Aggregation>(Aggregation.Mean)));
98    }
99
100    [StorableHook(HookType.AfterDeserialization)]
101    private void AfterDeserialization() {
102      if (!Parameters.ContainsKey(FinalAggregationParameterName)) {
103        Parameters.Add(new FixedValueParameter<EnumValue<Aggregation>>(FinalAggregationParameterName, "If root node of the expression tree results in a Vector it is aggregated according to this parameter", new EnumValue<Aggregation>(Aggregation.Mean)));
104      }
105    }
106
107    #region IStatefulItem
108    public void InitializeState() {
109      EvaluatedSolutions = 0;
110    }
111
112    public void ClearState() { }
113    #endregion
114
115    private readonly object syncRoot = new object();
116    public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable<int> rows) {
117      lock (syncRoot) {
118        EvaluatedSolutions++; // increment the evaluated solutions counter
119      }
120      var state = PrepareInterpreterState(tree, dataset);
121
122      foreach (var rowEnum in rows) {
123        int row = rowEnum;
124        var result = Evaluate(dataset, ref row, state);
125        if (result.IsScalar)
126          yield return result.Scalar;
127        else if (result.IsVector) {
128          if (FinalAggregation == Aggregation.Mean) yield return result.Vector.Mean();
129          else if (FinalAggregation == Aggregation.Median) yield return Statistics.Median(result.Vector);
130          else if (FinalAggregation == Aggregation.Sum) yield return result.Vector.Sum();
131          else if (FinalAggregation == Aggregation.First) yield return result.Vector.First();
132          else if (FinalAggregation == Aggregation.Exception) throw new InvalidOperationException("Result of the tree is not a scalar.");
133          else yield return double.NaN;
134        } else
135          yield return double.NaN;
136        state.Reset();
137      }
138    }
139
140    private static InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, IDataset dataset) {
141      Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
142      int necessaryArgStackSize = 0;
143      foreach (Instruction instr in code) {
144        if (instr.opCode == OpCodes.Variable) {
145          var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
146          if (dataset.VariableHasType<double>(variableTreeNode.VariableName))
147            instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
148          else if (dataset.VariableHasType<DoubleVector>(variableTreeNode.VariableName))
149            instr.data = dataset.GetReadOnlyDoubleVectorValues(variableTreeNode.VariableName);
150          else throw new NotSupportedException($"Type of variable {variableTreeNode.VariableName} is not supported.");
151        } else if (instr.opCode == OpCodes.FactorVariable) {
152          var factorTreeNode = instr.dynamicNode as FactorVariableTreeNode;
153          instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
154        } else if (instr.opCode == OpCodes.BinaryFactorVariable) {
155          var factorTreeNode = instr.dynamicNode as BinaryFactorVariableTreeNode;
156          instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
157        } else if (instr.opCode == OpCodes.LagVariable) {
158          var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
159          instr.data = dataset.GetReadOnlyDoubleValues(laggedVariableTreeNode.VariableName);
160        } else if (instr.opCode == OpCodes.VariableCondition) {
161          var variableConditionTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
162          instr.data = dataset.GetReadOnlyDoubleValues(variableConditionTreeNode.VariableName);
163        } else if (instr.opCode == OpCodes.Call) {
164          necessaryArgStackSize += instr.nArguments + 1;
165        }
166      }
167      return new InterpreterState(code, necessaryArgStackSize);
168    }
169
170
171    public struct EvaluationResult {
172      public double Scalar { get; }
173      public bool IsScalar => !double.IsNaN(Scalar);
174
175      public DoubleVector Vector { get; }
176      public bool IsVector => !(Vector.Count == 1 && double.IsNaN(Vector[0]));
177
178      public bool IsNaN => !IsScalar && !IsVector;
179
180      public EvaluationResult(double scalar) {
181        Scalar = scalar;
182        Vector = NaNVector;
183      }
184      public EvaluationResult(DoubleVector vector) {
185        if (vector == null) throw new ArgumentNullException(nameof(vector));
186        Vector = vector;
187        Scalar = double.NaN;
188      }
189
190      public override string ToString() {
191        if (IsScalar) return Scalar.ToString();
192        if (IsVector) return Vector.ToVectorString();
193        return "NaN";
194      }
195
196      private static readonly DoubleVector NaNVector = DoubleVector.Build.Dense(1, double.NaN);
197      public static readonly EvaluationResult NaN = new EvaluationResult(double.NaN);
198    }
199
200    private static EvaluationResult ArithmeticApply(EvaluationResult lhs, EvaluationResult rhs,
201      Func<double, double, double> ssFunc = null,
202      Func<double, DoubleVector, DoubleVector> svFunc = null,
203      Func<DoubleVector, double, DoubleVector> vsFunc = null,
204      Func<DoubleVector, DoubleVector, DoubleVector> vvFunc = null) {
205      if (lhs.IsScalar && rhs.IsScalar && ssFunc != null) return new EvaluationResult(ssFunc(lhs.Scalar, rhs.Scalar));
206      if (lhs.IsScalar && rhs.IsVector && svFunc != null) return new EvaluationResult(svFunc(lhs.Scalar, rhs.Vector));
207      if (lhs.IsVector && rhs.IsScalar && vsFunc != null) return new EvaluationResult(vsFunc(lhs.Vector, rhs.Scalar));
208      if (lhs.IsVector && rhs.IsVector && vvFunc != null) return new EvaluationResult(vvFunc(lhs.Vector, rhs.Vector));
209      return EvaluationResult.NaN;
210    }
211
212    private static EvaluationResult FunctionApply(EvaluationResult val,
213      Func<double, double> sFunc = null,
214      Func<DoubleVector, DoubleVector> vFunc = null) {
215      if (val.IsScalar && sFunc != null) return new EvaluationResult(sFunc(val.Scalar));
216      if (val.IsVector && vFunc != null) return new EvaluationResult(vFunc(val.Vector));
217      return EvaluationResult.NaN;
218    }
219    private static EvaluationResult AggregateApply(EvaluationResult val,
220      Func<double, double> sFunc = null,
221      Func<DoubleVector, double> vFunc = null) {
222      if (val.IsScalar && sFunc != null) return new EvaluationResult(sFunc(val.Scalar));
223      if (val.IsVector && vFunc != null) return new EvaluationResult(vFunc(val.Vector));
224      return EvaluationResult.NaN;
225    }
226
227    private static EvaluationResult AggregateApply(EvaluationResult val, WindowedSymbolTreeNode node,
228      Func<double, double> sFunc = null,
229      Func<DoubleVector, double> vFunc = null) {
230
231      var offset = node.Offset;
232      var length = node.Length;
233
234      DoubleVector SubVector(DoubleVector v) {
235        int index = (int)(offset * v.Count);
236        int count = (int)(length * (v.Count - index));
237        return v.SubVector(index, count);
238      };
239
240      if (val.IsScalar && sFunc != null) return new EvaluationResult(sFunc(val.Scalar));
241      if (val.IsVector && vFunc != null) return new EvaluationResult(vFunc(SubVector(val.Vector)));
242      return EvaluationResult.NaN;
243    }
244    private static EvaluationResult AggregateMultipleApply(EvaluationResult lhs, EvaluationResult rhs,
245      Func<double, double, double> ssFunc = null,
246      Func<double, DoubleVector, double> svFunc = null,
247      Func<DoubleVector, double, double> vsFunc = null,
248      Func<DoubleVector, DoubleVector, double> vvFunc = null) {
249      if (lhs.IsScalar && rhs.IsScalar && ssFunc != null) return new EvaluationResult(ssFunc(lhs.Scalar, rhs.Scalar));
250      if (lhs.IsScalar && rhs.IsVector && svFunc != null) return new EvaluationResult(svFunc(lhs.Scalar, rhs.Vector));
251      if (lhs.IsVector && rhs.IsScalar && vsFunc != null) return new EvaluationResult(vsFunc(lhs.Vector, rhs.Scalar));
252      if (lhs.IsVector && rhs.IsVector && vvFunc != null) return new EvaluationResult(vvFunc(lhs.Vector, rhs.Vector));
253      return EvaluationResult.NaN;
254    }
255
256    public virtual IEnumerable<EvaluationResult> EvaluateNode(ISymbolicExpressionTreeNode node, IDataset dataset, IEnumerable<int> rows) {
257      //lock (syncRoot) {
258      //  EvaluatedSolutions++; // increment the evaluated solutions counter
259      //}
260
261      var startNode = new StartSymbol().CreateTreeNode();
262      startNode.AddSubtree(node);
263      var programNode = new ProgramRootSymbol().CreateTreeNode();
264      programNode.AddSubtree(startNode);
265      var tree = new SymbolicExpressionTree(programNode);
266
267      var state = PrepareInterpreterState(tree, dataset);
268
269      foreach (var rowEnum in rows) {
270        int row = rowEnum;
271        var result = Evaluate(dataset, ref row, state);
272        yield return result;
273        state.Reset();
274      }
275    }
276
277    public virtual EvaluationResult Evaluate(IDataset dataset, ref int row, InterpreterState state) {
278      Instruction currentInstr = state.NextInstruction();
279      switch (currentInstr.opCode) {
280        case OpCodes.Add: {
281            var cur = Evaluate(dataset, ref row, state);
282            for (int i = 1; i < currentInstr.nArguments; i++) {
283              var op = Evaluate(dataset, ref row, state);
284              cur = ArithmeticApply(cur, op,
285                (s1, s2) => s1 + s2,
286                (s1, v2) => s1 + v2,
287                (v1, s2) => v1 + s2,
288                (v1, v2) => v1 + v2);
289            }
290            return cur;
291          }
292        case OpCodes.Sub: {
293            var cur = Evaluate(dataset, ref row, state);
294            for (int i = 1; i < currentInstr.nArguments; i++) {
295              var op = Evaluate(dataset, ref row, state);
296              cur = ArithmeticApply(cur, op,
297                (s1, s2) => s1 - s2,
298                (s1, v2) => s1 - v2,
299                (v1, s2) => v1 - s2,
300                (v1, v2) => v1 - v2);
301            }
302            return cur;
303          }
304        case OpCodes.Mul: {
305            var cur = Evaluate(dataset, ref row, state);
306            for (int i = 1; i < currentInstr.nArguments; i++) {
307              var op = Evaluate(dataset, ref row, state);
308              cur = ArithmeticApply(cur, op,
309                (s1, s2) => s1 * s2,
310                (s1, v2) => s1 * v2,
311                (v1, s2) => v1 * s2,
312                (v1, v2) => v1.PointwiseMultiply(v2));
313            }
314            return cur;
315          }
316        case OpCodes.Div: {
317            var cur = Evaluate(dataset, ref row, state);
318            for (int i = 1; i < currentInstr.nArguments; i++) {
319              var op = Evaluate(dataset, ref row, state);
320              cur = ArithmeticApply(cur, op,
321                (s1, s2) => s1 / s2,
322                (s1, v2) => s1 / v2,
323                (v1, s2) => v1 / s2,
324                (v1, v2) => v1 / v2);
325            }
326            return cur;
327          }
328        case OpCodes.Absolute: {
329            var cur = Evaluate(dataset, ref row, state);
330            return FunctionApply(cur, Math.Abs, DoubleVector.Abs);
331          }
332        case OpCodes.Tanh: {
333            var cur = Evaluate(dataset, ref row, state);
334            return FunctionApply(cur, Math.Tanh, DoubleVector.Tanh);
335          }
336        case OpCodes.Cos: {
337            var cur = Evaluate(dataset, ref row, state);
338            return FunctionApply(cur, Math.Cos, DoubleVector.Cos);
339          }
340        case OpCodes.Sin: {
341            var cur = Evaluate(dataset, ref row, state);
342            return FunctionApply(cur, Math.Sin, DoubleVector.Sin);
343          }
344        case OpCodes.Tan: {
345            var cur = Evaluate(dataset, ref row, state);
346            return FunctionApply(cur, Math.Tan, DoubleVector.Tan);
347          }
348        case OpCodes.Square: {
349            var cur = Evaluate(dataset, ref row, state);
350            return FunctionApply(cur,
351              s => Math.Pow(s, 2),
352              v => v.PointwisePower(2));
353          }
354        case OpCodes.Cube: {
355            var cur = Evaluate(dataset, ref row, state);
356            return FunctionApply(cur,
357              s => Math.Pow(s, 3),
358              v => v.PointwisePower(3));
359          }
360        case OpCodes.Power: {
361            var x = Evaluate(dataset, ref row, state);
362            var y = Evaluate(dataset, ref row, state);
363            return ArithmeticApply(x, y,
364              (s1, s2) => Math.Pow(s1, Math.Round(s2)),
365              (s1, v2) => DoubleVector.Build.Dense(v2.Count, s1).PointwisePower(DoubleVector.Round(v2)),
366              (v1, s2) => v1.PointwisePower(Math.Round(s2)),
367              (v1, v2) => v1.PointwisePower(DoubleVector.Round(v2)));
368          }
369        case OpCodes.SquareRoot: {
370            var cur = Evaluate(dataset, ref row, state);
371            return FunctionApply(cur,
372              s => Math.Sqrt(s),
373              v => DoubleVector.Sqrt(v));
374          }
375        case OpCodes.CubeRoot: {
376            var cur = Evaluate(dataset, ref row, state);
377            return FunctionApply(cur,
378              s => s < 0 ? -Math.Pow(-s, 1.0 / 3.0) : Math.Pow(s, 1.0 / 3.0),
379              v => v.Map(s => s < 0 ? -Math.Pow(-s, 1.0 / 3.0) : Math.Pow(s, 1.0 / 3.0)));
380          }
381        case OpCodes.Root: {
382            var x = Evaluate(dataset, ref row, state);
383            var y = Evaluate(dataset, ref row, state);
384            return ArithmeticApply(x, y,
385              (s1, s2) => Math.Pow(s1, 1.0 / Math.Round(s2)),
386              (s1, v2) => DoubleVector.Build.Dense(v2.Count, s1).PointwisePower(1.0 / DoubleVector.Round(v2)),
387              (v1, s2) => v1.PointwisePower(1.0 / Math.Round(s2)),
388              (v1, v2) => v1.PointwisePower(1.0 / DoubleVector.Round(v2)));
389          }
390        case OpCodes.Exp: {
391            var cur = Evaluate(dataset, ref row, state);
392            return FunctionApply(cur,
393              s => Math.Exp(s),
394              v => DoubleVector.Exp(v));
395          }
396        case OpCodes.Log: {
397            var cur = Evaluate(dataset, ref row, state);
398            return FunctionApply(cur,
399              s => Math.Log(s),
400              v => DoubleVector.Log(v));
401          }
402        case OpCodes.Sum: {
403            var cur = Evaluate(dataset, ref row, state);
404            return AggregateApply(cur, (WindowedSymbolTreeNode)currentInstr.dynamicNode,
405              s => s,
406              v => v.Sum());
407          }
408        case OpCodes.Mean: {
409            var cur = Evaluate(dataset, ref row, state);
410            return AggregateApply(cur,
411              s => s,
412              v => v.Mean());
413          }
414        case OpCodes.StandardDeviation: {
415            var cur = Evaluate(dataset, ref row, state);
416            return AggregateApply(cur,
417              s => 0,
418              v => Statistics.PopulationStandardDeviation(v));
419          }
420        case OpCodes.Length: {
421            var cur = Evaluate(dataset, ref row, state);
422            return AggregateApply(cur,
423              s => 1,
424              v => v.Count);
425          }
426        case OpCodes.Min: {
427            var cur = Evaluate(dataset, ref row, state);
428            return AggregateApply(cur,
429              s => s,
430              v => Statistics.Minimum(v));
431          }
432        case OpCodes.Max: {
433            var cur = Evaluate(dataset, ref row, state);
434            return AggregateApply(cur,
435              s => s,
436              v => Statistics.Maximum(v));
437          }
438        case OpCodes.Variance: {
439            var cur = Evaluate(dataset, ref row, state);
440            return AggregateApply(cur,
441              s => 0,
442              v => Statistics.PopulationVariance(v));
443          }
444        case OpCodes.Skewness: {
445            var cur = Evaluate(dataset, ref row, state);
446            return AggregateApply(cur,
447              s => double.NaN,
448              v => Statistics.PopulationSkewness(v));
449          }
450        case OpCodes.Kurtosis: {
451            var cur = Evaluate(dataset, ref row, state);
452            return AggregateApply(cur,
453              s => double.NaN,
454              v => Statistics.PopulationKurtosis(v));
455          }
456        case OpCodes.EuclideanDistance: {
457            var x1 = Evaluate(dataset, ref row, state);
458            var x2 = Evaluate(dataset, ref row, state);
459            return AggregateMultipleApply(x1, x2,
460              //(s1, s2) => s1 - s2,
461              //(s1, v2) => Math.Sqrt((s1 - v2).PointwisePower(2).Sum()),
462              //(v1, s2) => Math.Sqrt((v1 - s2).PointwisePower(2).Sum()),
463              vvFunc: (v1, v2) => v1.Count == v2.Count ? Math.Sqrt((v1 - v2).PointwisePower(2).Sum()) : double.NaN);
464          }
465        case OpCodes.Covariance: {
466            var x1 = Evaluate(dataset, ref row, state);
467            var x2 = Evaluate(dataset, ref row, state);
468            return AggregateMultipleApply(x1, x2,
469              //(s1, s2) => 0,
470              //(s1, v2) => 0,
471              //(v1, s2) => 0,
472              vvFunc: (v1, v2) => v1.Count == v2.Count ? Statistics.PopulationCovariance(v1, v2) : double.NaN);
473          }
474        case OpCodes.Variable: {
475            if (row < 0 || row >= dataset.Rows) return EvaluationResult.NaN;
476            var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode;
477            if (currentInstr.data is IList<double> doubleList)
478              return new EvaluationResult(doubleList[row] * variableTreeNode.Weight);
479            if (currentInstr.data is IList<DoubleVector> doubleVectorList)
480              return new EvaluationResult(doubleVectorList[row] * variableTreeNode.Weight);
481            throw new NotSupportedException($"Unsupported type of variable: {currentInstr.data.GetType().GetPrettyName()}");
482          }
483        case OpCodes.BinaryFactorVariable: {
484            if (row < 0 || row >= dataset.Rows) return EvaluationResult.NaN;
485            var factorVarTreeNode = currentInstr.dynamicNode as BinaryFactorVariableTreeNode;
486            return new EvaluationResult(((IList<string>)currentInstr.data)[row] == factorVarTreeNode.VariableValue ? factorVarTreeNode.Weight : 0);
487          }
488        case OpCodes.FactorVariable: {
489            if (row < 0 || row >= dataset.Rows) return EvaluationResult.NaN;
490            var factorVarTreeNode = currentInstr.dynamicNode as FactorVariableTreeNode;
491            return new EvaluationResult(factorVarTreeNode.GetValue(((IList<string>)currentInstr.data)[row]));
492          }
493        case OpCodes.Constant: {
494            var constTreeNode = (ConstantTreeNode)currentInstr.dynamicNode;
495            return new EvaluationResult(constTreeNode.Value);
496          }
497
498        default:
499          throw new NotSupportedException($"Unsupported OpCode: {currentInstr.opCode}");
500      }
501    }
502  }
503}
Note: See TracBrowser for help on using the repository browser.