1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Runtime.Serialization;
|
---|
26 | using AutoDiff;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
31 | public class VectorUnrollingTreeToAutoDiffTermConverter {
|
---|
32 | public delegate double ParametricFunction(double[] vars, double[] @params);
|
---|
33 |
|
---|
34 | public delegate Tuple<double[], double> ParametricFunctionGradient(double[] vars, double[] @params);
|
---|
35 |
|
---|
36 | #region helper class
|
---|
37 | public class DataForVariable {
|
---|
38 | public readonly string variableName;
|
---|
39 | public readonly string variableValue; // for factor vars
|
---|
40 | public readonly int lag;
|
---|
41 | public readonly int index; // for vectors
|
---|
42 |
|
---|
43 | public DataForVariable(string varName, string varValue, int lag, int index) {
|
---|
44 | this.variableName = varName;
|
---|
45 | this.variableValue = varValue;
|
---|
46 | this.lag = lag;
|
---|
47 | this.index = index;
|
---|
48 | }
|
---|
49 |
|
---|
50 | public override bool Equals(object obj) {
|
---|
51 | var other = obj as DataForVariable;
|
---|
52 | if (other == null) return false;
|
---|
53 | return other.variableName.Equals(this.variableName) &&
|
---|
54 | other.variableValue.Equals(this.variableValue) &&
|
---|
55 | other.lag == this.lag &&
|
---|
56 | other.index == this.index;
|
---|
57 | }
|
---|
58 |
|
---|
59 | public override int GetHashCode() {
|
---|
60 | return variableName.GetHashCode() ^ variableValue.GetHashCode() ^ lag ^ index;
|
---|
61 | }
|
---|
62 | }
|
---|
63 | #endregion
|
---|
64 |
|
---|
65 | #region derivations of functions
|
---|
66 | // create function factory for arctangent
|
---|
67 | private static readonly Func<Term, UnaryFunc> arctan = UnaryFunc.Factory(
|
---|
68 | eval: Math.Atan,
|
---|
69 | diff: x => 1 / (1 + x * x));
|
---|
70 |
|
---|
71 | private static readonly Func<Term, UnaryFunc> sin = UnaryFunc.Factory(
|
---|
72 | eval: Math.Sin,
|
---|
73 | diff: Math.Cos);
|
---|
74 |
|
---|
75 | private static readonly Func<Term, UnaryFunc> cos = UnaryFunc.Factory(
|
---|
76 | eval: Math.Cos,
|
---|
77 | diff: x => -Math.Sin(x));
|
---|
78 |
|
---|
79 | private static readonly Func<Term, UnaryFunc> tan = UnaryFunc.Factory(
|
---|
80 | eval: Math.Tan,
|
---|
81 | diff: x => 1 + Math.Tan(x) * Math.Tan(x));
|
---|
82 | private static readonly Func<Term, UnaryFunc> tanh = UnaryFunc.Factory(
|
---|
83 | eval: Math.Tanh,
|
---|
84 | diff: x => 1 - Math.Tanh(x) * Math.Tanh(x));
|
---|
85 | private static readonly Func<Term, UnaryFunc> erf = UnaryFunc.Factory(
|
---|
86 | eval: alglib.errorfunction,
|
---|
87 | diff: x => 2.0 * Math.Exp(-(x * x)) / Math.Sqrt(Math.PI));
|
---|
88 |
|
---|
89 | private static readonly Func<Term, UnaryFunc> norm = UnaryFunc.Factory(
|
---|
90 | eval: alglib.normaldistribution,
|
---|
91 | diff: x => -(Math.Exp(-(x * x)) * Math.Sqrt(Math.Exp(x * x)) * x) / Math.Sqrt(2 * Math.PI));
|
---|
92 |
|
---|
93 | private static readonly Func<Term, UnaryFunc> abs = UnaryFunc.Factory(
|
---|
94 | eval: Math.Abs,
|
---|
95 | diff: x => Math.Sign(x)
|
---|
96 | );
|
---|
97 |
|
---|
98 | private static readonly Func<Term, UnaryFunc> cbrt = UnaryFunc.Factory(
|
---|
99 | eval: x => x < 0 ? -Math.Pow(-x, 1.0 / 3) : Math.Pow(x, 1.0 / 3),
|
---|
100 | diff: x => { var cbrt_x = x < 0 ? -Math.Pow(-x, 1.0 / 3) : Math.Pow(x, 1.0 / 3); return 1.0 / (3 * cbrt_x * cbrt_x); }
|
---|
101 | );
|
---|
102 |
|
---|
103 |
|
---|
104 |
|
---|
105 | #endregion
|
---|
106 |
|
---|
107 | public static bool TryConvertToAutoDiff(ISymbolicExpressionTree tree,
|
---|
108 | IDictionary<ISymbolicExpressionTreeNode, SymbolicDataAnalysisExpressionTreeVectorInterpreter.EvaluationResult> evaluationTrace,
|
---|
109 | bool makeVariableWeightsVariable, bool addLinearScalingTerms,
|
---|
110 | out List<DataForVariable> parameters, out double[] initialConstants,
|
---|
111 | out ParametricFunction func,
|
---|
112 | out ParametricFunctionGradient func_grad) {
|
---|
113 |
|
---|
114 | // use a transformator object which holds the state (variable list, parameter list, ...) for recursive transformation of the tree
|
---|
115 | var transformator = new VectorUnrollingTreeToAutoDiffTermConverter(evaluationTrace,
|
---|
116 | makeVariableWeightsVariable, addLinearScalingTerms);
|
---|
117 | Term term;
|
---|
118 | try {
|
---|
119 | term = transformator.ConvertToAutoDiff(tree.Root.GetSubtree(0)).Single();
|
---|
120 | var parameterEntries = transformator.parameters.ToArray(); // guarantee same order for keys and values
|
---|
121 | var compiledTerm = term.Compile(transformator.variables.ToArray(),
|
---|
122 | parameterEntries.Select(kvp => kvp.Value).ToArray());
|
---|
123 | parameters = new List<DataForVariable>(parameterEntries.Select(kvp => kvp.Key));
|
---|
124 | initialConstants = transformator.initialConstants.ToArray();
|
---|
125 | func = (vars, @params) => compiledTerm.Evaluate(vars, @params);
|
---|
126 | func_grad = (vars, @params) => compiledTerm.Differentiate(vars, @params);
|
---|
127 | return true;
|
---|
128 | } catch (ConversionException) {
|
---|
129 | func = null;
|
---|
130 | func_grad = null;
|
---|
131 | parameters = null;
|
---|
132 | initialConstants = null;
|
---|
133 | }
|
---|
134 | return false;
|
---|
135 | }
|
---|
136 |
|
---|
137 | private readonly IDictionary<ISymbolicExpressionTreeNode, SymbolicDataAnalysisExpressionTreeVectorInterpreter.EvaluationResult> evaluationTrace;
|
---|
138 | // state for recursive transformation of trees
|
---|
139 | private readonly List<double> initialConstants;
|
---|
140 | private readonly Dictionary<DataForVariable, AutoDiff.Variable> parameters;
|
---|
141 | private readonly List<AutoDiff.Variable> variables;
|
---|
142 | private readonly bool makeVariableWeightsVariable;
|
---|
143 | private readonly bool addLinearScalingTerms;
|
---|
144 |
|
---|
145 | private VectorUnrollingTreeToAutoDiffTermConverter(IDictionary<ISymbolicExpressionTreeNode, SymbolicDataAnalysisExpressionTreeVectorInterpreter.EvaluationResult> evaluationTrace,
|
---|
146 | bool makeVariableWeightsVariable, bool addLinearScalingTerms) {
|
---|
147 | this.evaluationTrace = evaluationTrace;
|
---|
148 | this.makeVariableWeightsVariable = makeVariableWeightsVariable;
|
---|
149 | this.addLinearScalingTerms = addLinearScalingTerms;
|
---|
150 | this.initialConstants = new List<double>();
|
---|
151 | this.parameters = new Dictionary<DataForVariable, AutoDiff.Variable>();
|
---|
152 | this.variables = new List<AutoDiff.Variable>();
|
---|
153 | }
|
---|
154 |
|
---|
155 | private static IEnumerable<IEnumerable<T>> Broadcast<T>(IList<T>[] source) {
|
---|
156 | var maxLength = source.Max(x => x.Count);
|
---|
157 | if (source.Any(x => x.Count != maxLength && x.Count != 1))
|
---|
158 | throw new InvalidOperationException("Length must match to maxLength or one");
|
---|
159 | return source.Select(x => x.Count == maxLength ? x : Enumerable.Repeat(x[0], maxLength));
|
---|
160 | }
|
---|
161 | public static IEnumerable<IEnumerable<T>> Transpose<T>(IEnumerable<IEnumerable<T>> source) {
|
---|
162 | var enumerators = source.Select(x => x.GetEnumerator()).ToArray();
|
---|
163 | try {
|
---|
164 | while (enumerators.All(x => x.MoveNext())) {
|
---|
165 | yield return enumerators.Select(x => x.Current).ToArray();
|
---|
166 | }
|
---|
167 | } finally {
|
---|
168 | foreach (var enumerator in enumerators)
|
---|
169 | enumerator.Dispose();
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | private IList<AutoDiff.Term> ConvertToAutoDiff(ISymbolicExpressionTreeNode node) {
|
---|
174 | IList<Term> BinaryOp(Func<Term, Term, Term> binaryOp, Func<Term, Term> singleElementOp, params IList<Term>[] terms) {
|
---|
175 | if (terms.Length == 1) return terms[0].Select(singleElementOp).ToList();
|
---|
176 | var broadcastedTerms = Broadcast(terms);
|
---|
177 | var transposedTerms = Transpose(broadcastedTerms);
|
---|
178 | return transposedTerms.Select(term => term.Aggregate(binaryOp)).ToList();
|
---|
179 | }
|
---|
180 | IList<Term> UnaryOp(Func<Term, Term> unaryOp, IList<Term> term) {
|
---|
181 | return term.Select(unaryOp).ToList();
|
---|
182 | }
|
---|
183 |
|
---|
184 | var evaluationResult = evaluationTrace[node];
|
---|
185 |
|
---|
186 | if (node.Symbol is Constant) { // assume scalar constant
|
---|
187 | initialConstants.Add(((ConstantTreeNode)node).Value);
|
---|
188 | var var = new AutoDiff.Variable();
|
---|
189 | variables.Add(var);
|
---|
190 | return new Term[] { var };
|
---|
191 | }
|
---|
192 | if (node.Symbol is Variable || node.Symbol is BinaryFactorVariable) {
|
---|
193 | var varNode = node as VariableTreeNodeBase;
|
---|
194 | var factorVarNode = node as BinaryFactorVariableTreeNode;
|
---|
195 | // factor variable values are only 0 or 1 and set in x accordingly
|
---|
196 | var varValue = factorVarNode != null ? factorVarNode.VariableValue : string.Empty;
|
---|
197 | var pars = evaluationResult.IsVector
|
---|
198 | ? Enumerable.Range(0, evaluationResult.Vector.Count).Select(i => FindOrCreateParameter(parameters, varNode.VariableName, varValue, index: i))
|
---|
199 | : FindOrCreateParameter(parameters, varNode.VariableName, varValue).ToEnumerable();
|
---|
200 |
|
---|
201 | if (makeVariableWeightsVariable) {
|
---|
202 | initialConstants.Add(varNode.Weight);
|
---|
203 | var w = new AutoDiff.Variable();
|
---|
204 | variables.Add(w);
|
---|
205 | return pars.Select(par => AutoDiff.TermBuilder.Product(w, par)).ToList();
|
---|
206 | } else {
|
---|
207 | return pars.Select(par => varNode.Weight * par).ToList();
|
---|
208 | }
|
---|
209 | }
|
---|
210 | if (node.Symbol is FactorVariable) {
|
---|
211 | var factorVarNode = node as FactorVariableTreeNode;
|
---|
212 | var products = new List<Term>();
|
---|
213 | foreach (var variableValue in factorVarNode.Symbol.GetVariableValues(factorVarNode.VariableName)) {
|
---|
214 | var par = FindOrCreateParameter(parameters, factorVarNode.VariableName, variableValue);
|
---|
215 |
|
---|
216 | initialConstants.Add(factorVarNode.GetValue(variableValue));
|
---|
217 | var wVar = new AutoDiff.Variable();
|
---|
218 | variables.Add(wVar);
|
---|
219 |
|
---|
220 | products.Add(AutoDiff.TermBuilder.Product(wVar, par));
|
---|
221 | }
|
---|
222 | return new[] { AutoDiff.TermBuilder.Sum(products) };
|
---|
223 | }
|
---|
224 | //if (node.Symbol is LaggedVariable) {
|
---|
225 | // var varNode = node as LaggedVariableTreeNode;
|
---|
226 | // var par = FindOrCreateParameter(parameters, varNode.VariableName, string.Empty, varNode.Lag);
|
---|
227 |
|
---|
228 | // if (makeVariableWeightsVariable) {
|
---|
229 | // initialConstants.Add(varNode.Weight);
|
---|
230 | // var w = new AutoDiff.Variable();
|
---|
231 | // variables.Add(w);
|
---|
232 | // return AutoDiff.TermBuilder.Product(w, par);
|
---|
233 | // } else {
|
---|
234 | // return varNode.Weight * par;
|
---|
235 | // }
|
---|
236 | //}
|
---|
237 | if (node.Symbol is Addition) {
|
---|
238 | var terms = node.Subtrees.Select(ConvertToAutoDiff).ToArray();
|
---|
239 | return BinaryOp((a, b) => a + b, a => a, terms);
|
---|
240 | }
|
---|
241 | if (node.Symbol is Subtraction) {
|
---|
242 | var terms = node.Subtrees.Select(ConvertToAutoDiff).ToArray();
|
---|
243 | return BinaryOp((a, b) => a - b, a => -a, terms);
|
---|
244 | }
|
---|
245 | if (node.Symbol is Multiplication) {
|
---|
246 | var terms = node.Subtrees.Select(ConvertToAutoDiff).ToArray();
|
---|
247 | return BinaryOp((a, b) => a * b, a => a, terms);
|
---|
248 | }
|
---|
249 | if (node.Symbol is Division) {
|
---|
250 | var terms = node.Subtrees.Select(ConvertToAutoDiff).ToArray();
|
---|
251 | return BinaryOp((a, b) => a / b, a => 1.0 / a, terms);
|
---|
252 | }
|
---|
253 | if (node.Symbol is Absolute) {
|
---|
254 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
255 | return UnaryOp(abs, term);
|
---|
256 | }
|
---|
257 | //if (node.Symbol is AnalyticQuotient) {
|
---|
258 | // var x1 = ConvertToAutoDiff(node.GetSubtree(0));
|
---|
259 | // var x2 = ConvertToAutoDiff(node.GetSubtree(1));
|
---|
260 | // return x1 / (TermBuilder.Power(1 + x2 * x2, 0.5));
|
---|
261 | //}
|
---|
262 | if (node.Symbol is Logarithm) {
|
---|
263 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
264 | return UnaryOp(TermBuilder.Log, term);
|
---|
265 | }
|
---|
266 | if (node.Symbol is Exponential) {
|
---|
267 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
268 | return UnaryOp(TermBuilder.Exp, term);
|
---|
269 | }
|
---|
270 | if (node.Symbol is Square) {
|
---|
271 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
272 | return UnaryOp(t => TermBuilder.Power(t, 2.0), term);
|
---|
273 | }
|
---|
274 | if (node.Symbol is SquareRoot) {
|
---|
275 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
276 | return UnaryOp(t => TermBuilder.Power(t, 0.5), term);
|
---|
277 | }
|
---|
278 | if (node.Symbol is Cube) {
|
---|
279 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
280 | return UnaryOp(t => TermBuilder.Power(t, 3.0), term);
|
---|
281 | }
|
---|
282 | if (node.Symbol is CubeRoot) {
|
---|
283 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
284 | return UnaryOp(cbrt, term);
|
---|
285 | }
|
---|
286 | if (node.Symbol is Sine) {
|
---|
287 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
288 | return UnaryOp(sin, term);
|
---|
289 | }
|
---|
290 | if (node.Symbol is Cosine) {
|
---|
291 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
292 | return UnaryOp(cos, term);
|
---|
293 | }
|
---|
294 | if (node.Symbol is Tangent) {
|
---|
295 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
296 | return UnaryOp(tan, term);
|
---|
297 | }
|
---|
298 | if (node.Symbol is HyperbolicTangent) {
|
---|
299 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
300 | return UnaryOp(tanh, term);
|
---|
301 | }
|
---|
302 | if (node.Symbol is Erf) {
|
---|
303 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
304 | return UnaryOp(erf, term);
|
---|
305 | }
|
---|
306 | if (node.Symbol is Norm) {
|
---|
307 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
308 | return UnaryOp(norm, term);
|
---|
309 | }
|
---|
310 | if (node.Symbol is StartSymbol) {
|
---|
311 | if (addLinearScalingTerms) {
|
---|
312 | // scaling variables α, β are given at the beginning of the parameter vector
|
---|
313 | var alpha = new AutoDiff.Variable();
|
---|
314 | var beta = new AutoDiff.Variable();
|
---|
315 | variables.Add(beta);
|
---|
316 | variables.Add(alpha);
|
---|
317 | var t = ConvertToAutoDiff(node.GetSubtree(0));
|
---|
318 | if (t.Count > 1) throw new InvalidOperationException("Tree Result must be scalar value");
|
---|
319 | return new[] { t[0] * alpha + beta };
|
---|
320 | } else return ConvertToAutoDiff(node.GetSubtree(0));
|
---|
321 | }
|
---|
322 | if (node.Symbol is Sum) {
|
---|
323 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
324 | return new[] { TermBuilder.Sum(term) };
|
---|
325 | }
|
---|
326 | if (node.Symbol is Mean) {
|
---|
327 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
328 | return new[] { TermBuilder.Sum(term) / term.Count };
|
---|
329 | }
|
---|
330 | if (node.Symbol is StandardDeviation) {
|
---|
331 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
332 | var mean = TermBuilder.Sum(term) / term.Count;
|
---|
333 | var ssd = TermBuilder.Sum(term.Select(t => TermBuilder.Power(t - mean, 2.0)));
|
---|
334 | return new[] { TermBuilder.Power(ssd / term.Count, 0.5) };
|
---|
335 | }
|
---|
336 | if (node.Symbol is Length) {
|
---|
337 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
338 | return new[] { TermBuilder.Constant(term.Count) };
|
---|
339 | }
|
---|
340 | //if (node.Symbol is Min) {
|
---|
341 | //}
|
---|
342 | //if (node.Symbol is Max) {
|
---|
343 | //}
|
---|
344 | if (node.Symbol is Variance) {
|
---|
345 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
346 | var mean = TermBuilder.Sum(term) / term.Count;
|
---|
347 | var ssd = TermBuilder.Sum(term.Select(t => TermBuilder.Power(t - mean, 2.0)));
|
---|
348 | return new[] { ssd / term.Count };
|
---|
349 | }
|
---|
350 | //if (node.Symbol is Skewness) {
|
---|
351 | //}
|
---|
352 | //if (node.Symbol is Kurtosis) {
|
---|
353 | //}
|
---|
354 | //if (node.Symbol is EuclideanDistance) {
|
---|
355 | //}
|
---|
356 | //if (node.Symbol is Covariance) {
|
---|
357 | //}
|
---|
358 |
|
---|
359 | if (node.Symbol is SubVector) {
|
---|
360 | var term = node.Subtrees.Select(ConvertToAutoDiff).Single();
|
---|
361 | var windowedNode = (IWindowedSymbolTreeNode)node;
|
---|
362 | int startIdx = SymbolicDataAnalysisExpressionTreeVectorInterpreter.ToVectorIdx(windowedNode.Offset, term.Count);
|
---|
363 | int endIdx = SymbolicDataAnalysisExpressionTreeVectorInterpreter.ToVectorIdx(windowedNode.Length, term.Count);
|
---|
364 | var slices = SymbolicDataAnalysisExpressionTreeVectorInterpreter.GetVectorSlices(startIdx, endIdx, term.Count);
|
---|
365 |
|
---|
366 | var selectedTerms = new List<Term>(capacity: slices.Sum(s => s.Item2));
|
---|
367 | foreach (var (start, count) in slices) {
|
---|
368 | for (int i = start; i < start + count; i++){
|
---|
369 | selectedTerms.Add(term[i]);
|
---|
370 | }
|
---|
371 | }
|
---|
372 | return selectedTerms;
|
---|
373 | }
|
---|
374 |
|
---|
375 | throw new ConversionException();
|
---|
376 | }
|
---|
377 |
|
---|
378 |
|
---|
379 | // for each factor variable value we need a parameter which represents a binary indicator for that variable & value combination
|
---|
380 | // each binary indicator is only necessary once. So we only create a parameter if this combination is not yet available
|
---|
381 | private static Term FindOrCreateParameter(Dictionary<DataForVariable, AutoDiff.Variable> parameters,
|
---|
382 | string varName, string varValue = "", int lag = 0, int index = -1) {
|
---|
383 | var data = new DataForVariable(varName, varValue, lag, index);
|
---|
384 |
|
---|
385 | AutoDiff.Variable par = null;
|
---|
386 | if (!parameters.TryGetValue(data, out par)) {
|
---|
387 | // not found -> create new parameter and entries in names and values lists
|
---|
388 | par = new AutoDiff.Variable();
|
---|
389 | parameters.Add(data, par);
|
---|
390 | }
|
---|
391 | return par;
|
---|
392 | }
|
---|
393 |
|
---|
394 | public static bool IsCompatible(ISymbolicExpressionTree tree) {
|
---|
395 | var containsUnknownSymbol = (
|
---|
396 | from n in tree.Root.GetSubtree(0).IterateNodesPrefix()
|
---|
397 | where
|
---|
398 | !(n.Symbol is Variable) &&
|
---|
399 | !(n.Symbol is BinaryFactorVariable) &&
|
---|
400 | //!(n.Symbol is FactorVariable) &&
|
---|
401 | //!(n.Symbol is LaggedVariable) &&
|
---|
402 | !(n.Symbol is Constant) &&
|
---|
403 | !(n.Symbol is Addition) &&
|
---|
404 | !(n.Symbol is Subtraction) &&
|
---|
405 | !(n.Symbol is Multiplication) &&
|
---|
406 | !(n.Symbol is Division) &&
|
---|
407 | !(n.Symbol is Logarithm) &&
|
---|
408 | !(n.Symbol is Exponential) &&
|
---|
409 | !(n.Symbol is SquareRoot) &&
|
---|
410 | !(n.Symbol is Square) &&
|
---|
411 | !(n.Symbol is Sine) &&
|
---|
412 | !(n.Symbol is Cosine) &&
|
---|
413 | !(n.Symbol is Tangent) &&
|
---|
414 | !(n.Symbol is HyperbolicTangent) &&
|
---|
415 | !(n.Symbol is Erf) &&
|
---|
416 | !(n.Symbol is Norm) &&
|
---|
417 | !(n.Symbol is StartSymbol) &&
|
---|
418 | !(n.Symbol is Absolute) &&
|
---|
419 | //!(n.Symbol is AnalyticQuotient) &&
|
---|
420 | !(n.Symbol is Cube) &&
|
---|
421 | !(n.Symbol is CubeRoot) &&
|
---|
422 | !(n.Symbol is Sum) &&
|
---|
423 | !(n.Symbol is Mean) &&
|
---|
424 | !(n.Symbol is StandardDeviation) &&
|
---|
425 | !(n.Symbol is Length) &&
|
---|
426 | //!(n.Symbol is Min) &&
|
---|
427 | //!(n.Symbol is Max) &&
|
---|
428 | !(n.Symbol is Variance) &&
|
---|
429 | //!(n.Symbol is Skewness) &&
|
---|
430 | //!(n.Symbol is Kurtosis) &&
|
---|
431 | //!(n.Symbol is EuclideanDistance) &&
|
---|
432 | //!(n.Symbol is Covariance) &&
|
---|
433 | !(n.Symbol is SubVector)
|
---|
434 | select n).Any();
|
---|
435 | return !containsUnknownSymbol;
|
---|
436 | }
|
---|
437 | #region exception class
|
---|
438 | [Serializable]
|
---|
439 | public class ConversionException : Exception {
|
---|
440 |
|
---|
441 | public ConversionException() {
|
---|
442 | }
|
---|
443 |
|
---|
444 | public ConversionException(string message) : base(message) {
|
---|
445 | }
|
---|
446 |
|
---|
447 | public ConversionException(string message, Exception inner) : base(message, inner) {
|
---|
448 | }
|
---|
449 |
|
---|
450 | protected ConversionException(
|
---|
451 | SerializationInfo info,
|
---|
452 | StreamingContext context) : base(info, context) {
|
---|
453 | }
|
---|
454 | }
|
---|
455 | #endregion
|
---|
456 | }
|
---|
457 | }
|
---|