[17958] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
[17965] | 21 |
|
---|
| 22 | using System;
|
---|
[17958] | 23 | using System.IO;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HEAL.Attic;
|
---|
| 26 | using HeuristicLab.Algorithms.GeneticAlgorithm;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[17965] | 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[17958] | 29 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
| 30 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
| 31 | using HeuristicLab.Selection;
|
---|
| 32 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Tests {
|
---|
| 35 | [TestClass]
|
---|
| 36 | public class ShapeConstrainedRegressionSampleTest {
|
---|
| 37 | private const string SampleFileName = "GA_Shape_Constrained_Regression";
|
---|
| 38 | private static readonly ProtoBufSerializer serializer = new ProtoBufSerializer();
|
---|
| 39 |
|
---|
| 40 | [TestMethod]
|
---|
| 41 | [TestCategory("Samples.Execute")]
|
---|
| 42 | [TestProperty("Time", "long")]
|
---|
| 43 | public void RunShapeConstrainedRegressionSampleTest() {
|
---|
| 44 | var ga = CreateShapeConstrainedRegressionSample();
|
---|
| 45 | ga.SetSeedRandomly.Value = false;
|
---|
| 46 | SamplesUtils.RunAlgorithm(ga);
|
---|
| 47 |
|
---|
[17968] | 48 | if (Environment.Is64BitProcess) {
|
---|
| 49 | Assert.AreEqual(0.355347729912352, SamplesUtils.GetDoubleResult(ga, "BestQuality"), 1E-8);
|
---|
| 50 | Assert.AreEqual(27.6606834433137, SamplesUtils.GetDoubleResult(ga, "CurrentAverageQuality"), 1E-8);
|
---|
| 51 | Assert.AreEqual(3359.91748220025, SamplesUtils.GetDoubleResult(ga, "CurrentWorstQuality"), 1E-8);
|
---|
| 52 | Assert.AreEqual(150200, SamplesUtils.GetIntResult(ga, "EvaluatedSolutions"));
|
---|
| 53 | } else {
|
---|
| 54 | Assert.AreEqual(0.317642788600248, SamplesUtils.GetDoubleResult(ga, "BestQuality"), 1E-8);
|
---|
| 55 | Assert.AreEqual(40.9805778810063, SamplesUtils.GetDoubleResult(ga, "CurrentAverageQuality"), 1E-8);
|
---|
| 56 | Assert.AreEqual(3359.91748220025, SamplesUtils.GetDoubleResult(ga, "CurrentWorstQuality"), 1E-8);
|
---|
| 57 | Assert.AreEqual(150200, SamplesUtils.GetIntResult(ga, "EvaluatedSolutions"));
|
---|
| 58 | }
|
---|
[17958] | 59 | }
|
---|
| 60 |
|
---|
| 61 | public static GeneticAlgorithm CreateShapeConstrainedRegressionSample() {
|
---|
| 62 | var alg = new GeneticAlgorithm();
|
---|
| 63 | var provider = new FeynmanSmallInstanceProvider(0);
|
---|
| 64 | var instance = provider.GetDataDescriptors().Where(x => x.Name.Contains("Radiated gravitational wave power: -32/5*G**4/c**5*(m1*m2)**2*(m1+m2)/r**5 | no noise")).Single();
|
---|
| 65 | var problem = new ShapeConstrainedRegressionSingleObjectiveProblem();
|
---|
| 66 | problem.Load(provider.LoadData(instance));
|
---|
[17965] | 67 | var problemData = (IShapeConstrainedRegressionProblemData)problem.ProblemData;
|
---|
| 68 | problemData.ShapeConstraints.Add(new ShapeConstraint(new Interval(double.NegativeInfinity, 0), 1.0));
|
---|
| 69 | problemData.ShapeConstraints.Add(new ShapeConstraint("G", 1, new Interval(double.NegativeInfinity, 0), 1.0));
|
---|
| 70 | problemData.ShapeConstraints.Add(new ShapeConstraint("c", 1, new Interval(0, double.PositiveInfinity), 1.0));
|
---|
| 71 | problemData.ShapeConstraints.Add(new ShapeConstraint("m1", 1, new Interval(double.NegativeInfinity, 0), 1.0));
|
---|
| 72 | problemData.ShapeConstraints.Add(new ShapeConstraint("m2", 1, new Interval(double.NegativeInfinity, 0), 1.0));
|
---|
| 73 | problemData.ShapeConstraints.Add(new ShapeConstraint("r", 1, new Interval(0, double.PositiveInfinity), 1.0));
|
---|
[17958] | 74 |
|
---|
[17965] | 75 | problemData.VariableRanges.SetInterval("G", new Interval(1, 2));
|
---|
| 76 | problemData.VariableRanges.SetInterval("c", new Interval(1, 2));
|
---|
| 77 | problemData.VariableRanges.SetInterval("m1", new Interval(1, 5));
|
---|
| 78 | problemData.VariableRanges.SetInterval("m2", new Interval(1, 5));
|
---|
| 79 | problemData.VariableRanges.SetInterval("r", new Interval(1, 2));
|
---|
| 80 | problem.ProblemData = problemData;
|
---|
| 81 |
|
---|
| 82 |
|
---|
[17958] | 83 | #region Algorithm Configuration
|
---|
| 84 | alg.Name = "Genetic Programming - Shape constrained Regression";
|
---|
| 85 | alg.Description = "A standard genetic programming algorithm to solve a shape constrained regression problem (Radiated gravitational wave power - Feynman instance)";
|
---|
| 86 | alg.Problem = problem;
|
---|
| 87 |
|
---|
| 88 | SamplesUtils.ConfigureGeneticAlgorithmParameters<TournamentSelector, SubtreeCrossover, MultiSymbolicExpressionTreeManipulator>
|
---|
| 89 | (alg, popSize: 500, elites: 1, maxGens: 300, mutationRate: 0.15, tournGroupSize: 3);
|
---|
| 90 |
|
---|
| 91 | alg.Seed.Value = 0;
|
---|
| 92 | #endregion
|
---|
| 93 |
|
---|
| 94 | alg.Engine = new ParallelEngine.ParallelEngine();
|
---|
| 95 | return alg;
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | }
|
---|