1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using HeuristicLab.Common;
|
---|
5 | using HeuristicLab.Random;
|
---|
6 |
|
---|
7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
8 | public class Feynman62 : FeynmanDescriptor {
|
---|
9 | private readonly int testSamples;
|
---|
10 | private readonly int trainingSamples;
|
---|
11 |
|
---|
12 | public Feynman62() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
13 |
|
---|
14 | public Feynman62(int seed) {
|
---|
15 | Seed = seed;
|
---|
16 | trainingSamples = 10000;
|
---|
17 | testSamples = 10000;
|
---|
18 | noiseRatio = null;
|
---|
19 | }
|
---|
20 |
|
---|
21 | public Feynman62(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
22 | Seed = seed;
|
---|
23 | this.trainingSamples = trainingSamples;
|
---|
24 | this.testSamples = testSamples;
|
---|
25 | this.noiseRatio = noiseRatio;
|
---|
26 | }
|
---|
27 |
|
---|
28 | public override string Name {
|
---|
29 | get {
|
---|
30 | return string.Format("II.11.17 n_0*(1 + p_d*Ef*cos(theta)/(kb*T)) | {0}",
|
---|
31 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
32 | }
|
---|
33 | }
|
---|
34 |
|
---|
35 | protected override string TargetVariable { get { return noiseRatio == null ? "n" : "n_noise"; } }
|
---|
36 |
|
---|
37 | protected override string[] VariableNames {
|
---|
38 | get { return noiseRatio == null ? new[] { "n_0", "kb", "T", "theta", "p_d", "Ef", "n" } : new[] { "n_0", "kb", "T", "theta", "p_d", "Ef", "n", "n_noise" }; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | protected override string[] AllowedInputVariables { get { return new[] {"n_0", "kb", "T", "theta", "p_d", "Ef"}; } }
|
---|
42 |
|
---|
43 | public int Seed { get; private set; }
|
---|
44 |
|
---|
45 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
46 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
47 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
48 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
49 |
|
---|
50 | protected override List<List<double>> GenerateValues() {
|
---|
51 | var rand = new MersenneTwister((uint) Seed);
|
---|
52 |
|
---|
53 | var data = new List<List<double>>();
|
---|
54 | var n_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
55 | var kb = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
56 | var T = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
57 | var theta = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
58 | var p_d = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
59 | var Ef = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
60 |
|
---|
61 | var n = new List<double>();
|
---|
62 |
|
---|
63 | data.Add(n_0);
|
---|
64 | data.Add(kb);
|
---|
65 | data.Add(T);
|
---|
66 | data.Add(theta);
|
---|
67 | data.Add(p_d);
|
---|
68 | data.Add(Ef);
|
---|
69 | data.Add(n);
|
---|
70 |
|
---|
71 | for (var i = 0; i < n_0.Count; i++) {
|
---|
72 | var res = n_0[i] * (1 + p_d[i] * Ef[i] * Math.Cos(theta[i]) / (kb[i] * T[i]));
|
---|
73 | n.Add(res);
|
---|
74 | }
|
---|
75 |
|
---|
76 | var targetNoise = GetNoisyTarget(n, rand);
|
---|
77 | if (targetNoise != null) data.Add(targetNoise);
|
---|
78 |
|
---|
79 | return data;
|
---|
80 | }
|
---|
81 | }
|
---|
82 | } |
---|