Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3026_IntegrationIntoSymSpace/HeuristicLab.Algorithms.DataAnalysis/3.4/Nca/NcaModel.cs

Last change on this file was 18027, checked in by dpiringe, 3 years ago

#3026

  • merged trunk into branch
File size: 4.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HEAL.Attic;
27using HeuristicLab.Problems.DataAnalysis;
28
29namespace HeuristicLab.Algorithms.DataAnalysis {
30  [Item("NCA Model", "")]
31  [StorableType("BB2F9ECA-CEAF-4983-A34C-9A42A132B7CD")]
32  public class NcaModel : ClassificationModel, INcaModel {
33    public override IEnumerable<string> VariablesUsedForPrediction {
34      get { return allowedInputVariables; }
35    }
36
37    [Storable]
38    private double[,] transformationMatrix;
39    public double[,] TransformationMatrix {
40      get { return (double[,])transformationMatrix.Clone(); }
41    }
42    [Storable]
43    private string[] allowedInputVariables;
44    [Storable]
45    private INearestNeighbourModel nnModel;
46    [Storable]
47    private double[] classValues;
48
49    [StorableConstructor]
50    protected NcaModel(StorableConstructorFlag _) : base(_) { }
51    protected NcaModel(NcaModel original, Cloner cloner)
52      : base(original, cloner) {
53      this.transformationMatrix = (double[,])original.transformationMatrix.Clone();
54      this.allowedInputVariables = (string[])original.allowedInputVariables.Clone();
55      this.nnModel = cloner.Clone(original.nnModel);
56      this.classValues = (double[])original.classValues.Clone();
57    }
58    public NcaModel(int k, double[,] transformationMatrix, IDataset dataset, IEnumerable<int> rows, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues)
59      : base(targetVariable) {
60      Name = ItemName;
61      Description = ItemDescription;
62      this.transformationMatrix = (double[,])transformationMatrix.Clone();
63      this.allowedInputVariables = allowedInputVariables.ToArray();
64      this.classValues = (double[])classValues.Clone();
65
66      var ds = ReduceDataset(dataset, rows);
67      // the new implementation of kNN uses selfmatch=true by default
68      nnModel = new NearestNeighbourModelAlglib_3_7(ds, Enumerable.Range(0, ds.Rows), k, false, ds.VariableNames.Last(), ds.VariableNames.Take(transformationMatrix.GetLength(1)), classValues: classValues);
69    }
70
71    public override IDeepCloneable Clone(Cloner cloner) {
72      return new NcaModel(this, cloner);
73    }
74
75    public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
76      var ds = ReduceDataset(dataset, rows);
77      return nnModel.GetEstimatedClassValues(ds, Enumerable.Range(0, ds.Rows));
78    }
79
80    public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
81      return new NcaClassificationSolution(this, new ClassificationProblemData(problemData));
82    }
83
84    INcaClassificationSolution INcaModel.CreateClassificationSolution(IClassificationProblemData problemData) {
85      return new NcaClassificationSolution(this, new ClassificationProblemData(problemData));
86    }
87
88    public double[,] Reduce(IDataset dataset, IEnumerable<int> rows) {
89      var data = dataset.ToArray(allowedInputVariables, rows);
90
91      var targets = dataset.GetDoubleValues(TargetVariable, rows).ToArray();
92      var result = new double[data.GetLength(0), transformationMatrix.GetLength(1) + 1];
93      for (int i = 0; i < data.GetLength(0); i++)
94        for (int j = 0; j < data.GetLength(1); j++) {
95          for (int x = 0; x < transformationMatrix.GetLength(1); x++) {
96            result[i, x] += data[i, j] * transformationMatrix[j, x];
97          }
98          result[i, transformationMatrix.GetLength(1)] = targets[i];
99        }
100      return result;
101    }
102
103    public Dataset ReduceDataset(IDataset dataset, IEnumerable<int> rows) {
104      return new Dataset(Enumerable
105          .Range(0, transformationMatrix.GetLength(1))
106          .Select(x => "X" + x.ToString())
107          .Concat(TargetVariable.ToEnumerable()),
108        Reduce(dataset, rows));
109    }
110  }
111}
Note: See TracBrowser for help on using the repository browser.