1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Problems.DataAnalysis;
|
---|
27 | using HEAL.Attic;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | [StorableType("A2DDC528-BAA7-445F-98E1-5F895CE2FD5C")]
|
---|
31 | public class PrincipleComponentTransformation : IDeepCloneable {
|
---|
32 | #region Properties
|
---|
33 | [Storable]
|
---|
34 | private double[,] Matrix { get; set; }
|
---|
35 | [Storable]
|
---|
36 | public double[] Variances { get; private set; }
|
---|
37 | [Storable]
|
---|
38 | public string[] VariableNames { get; private set; }
|
---|
39 | [Storable]
|
---|
40 | private double[] Deviations { get; set; }
|
---|
41 | [Storable]
|
---|
42 | private double[] Means { get; set; }
|
---|
43 | public string[] ComponentNames {
|
---|
44 | get { return VariableNames.Select((_, x) => "pc" + x).ToArray(); }
|
---|
45 | }
|
---|
46 | #endregion
|
---|
47 |
|
---|
48 | #region HLConstructors
|
---|
49 | [StorableConstructor]
|
---|
50 | protected PrincipleComponentTransformation(StorableConstructorFlag _) { }
|
---|
51 | protected PrincipleComponentTransformation(PrincipleComponentTransformation original, Cloner cloner) {
|
---|
52 | if (original.Variances != null) Variances = original.Variances.ToArray();
|
---|
53 | if (original.VariableNames != null) VariableNames = original.VariableNames.ToArray();
|
---|
54 | if (original.Deviations != null) Deviations = original.Deviations.ToArray();
|
---|
55 | if (original.Means != null) Means = original.Means.ToArray();
|
---|
56 | if (original.Matrix == null) return;
|
---|
57 | Matrix = new double[original.Matrix.GetLength(0), original.Matrix.GetLength(1)];
|
---|
58 | for (var i = 0; i < original.Matrix.GetLength(0); i++)
|
---|
59 | for (var j = 0; j < original.Matrix.GetLength(1); j++)
|
---|
60 | Matrix[i, j] = original.Matrix[i, j];
|
---|
61 | }
|
---|
62 | private PrincipleComponentTransformation() { }
|
---|
63 | public IDeepCloneable Clone(Cloner cloner) {
|
---|
64 | return new PrincipleComponentTransformation(this, cloner);
|
---|
65 | }
|
---|
66 | public object Clone() {
|
---|
67 | return new Cloner().Clone(this);
|
---|
68 | }
|
---|
69 | #endregion
|
---|
70 |
|
---|
71 | #region Static Interface
|
---|
72 | public static PrincipleComponentTransformation CreateProjection(IDataset dataset, IEnumerable<int> rows, IEnumerable<string> variables, bool normalize = false) {
|
---|
73 | var res = new PrincipleComponentTransformation();
|
---|
74 | res.BuildPca(dataset, rows, variables, normalize);
|
---|
75 | return res;
|
---|
76 | }
|
---|
77 | #endregion
|
---|
78 |
|
---|
79 | #region Projection
|
---|
80 | public IRegressionProblemData TransformProblemData(IRegressionProblemData pd) {
|
---|
81 | return CreateProblemData(pd, TransformDataset(pd.Dataset), ComponentNames);
|
---|
82 | }
|
---|
83 |
|
---|
84 | public IDataset TransformDataset(IDataset data) {
|
---|
85 | return CreateDataset(data, TransformData(data, Enumerable.Range(0, data.Rows)));
|
---|
86 | }
|
---|
87 |
|
---|
88 | public double[,] TransformData(IDataset dataset, IEnumerable<int> rows) {
|
---|
89 | var instances = rows.ToArray();
|
---|
90 | var result = new double[instances.Length, VariableNames.Length];
|
---|
91 | for (var r = 0; r < instances.Length; r++)
|
---|
92 | for (var i = 0; i < VariableNames.Length; i++) {
|
---|
93 | var val = (dataset.GetDoubleValue(VariableNames[i], instances[r]) - Means[i]) / Deviations[i];
|
---|
94 | for (var j = 0; j < VariableNames.Length; j++)
|
---|
95 | result[r, j] += val * Matrix[i, j];
|
---|
96 | }
|
---|
97 | return result;
|
---|
98 | }
|
---|
99 | #endregion
|
---|
100 |
|
---|
101 | #region Reversion
|
---|
102 | public IRegressionProblemData RevertProblemData(IRegressionProblemData pd) {
|
---|
103 | return CreateProblemData(pd, RevertDataset(pd.Dataset), VariableNames);
|
---|
104 | }
|
---|
105 |
|
---|
106 | public IDataset RevertDataset(IDataset data) {
|
---|
107 | return CreateRevertedDataset(data, RevertData(data, Enumerable.Range(0, data.Rows)));
|
---|
108 | }
|
---|
109 |
|
---|
110 | public double[,] RevertData(IDataset dataset, IEnumerable<int> rows) {
|
---|
111 | var instances = rows.ToArray();
|
---|
112 | var components = ComponentNames;
|
---|
113 | var result = new double[instances.Length, VariableNames.Length];
|
---|
114 | for (var r = 0; r < instances.Length; r++)
|
---|
115 | for (var i = 0; i < components.Length; i++) {
|
---|
116 | var val = dataset.GetDoubleValue(components[i], instances[r]);
|
---|
117 | for (var j = 0; j < VariableNames.Length; j++)
|
---|
118 | result[r, j] += val * Matrix[j, i];
|
---|
119 | }
|
---|
120 | for (var r = 0; r < instances.Length; r++) {
|
---|
121 | for (var j = 0; j < VariableNames.Length; j++) {
|
---|
122 | result[r, j] *= Deviations[j];
|
---|
123 | result[r, j] += Means[j];
|
---|
124 | }
|
---|
125 | }
|
---|
126 |
|
---|
127 | return result;
|
---|
128 | }
|
---|
129 | #endregion
|
---|
130 |
|
---|
131 | #region Helpers
|
---|
132 | private static IRegressionProblemData CreateProblemData(IRegressionProblemData pd, IDataset data, IReadOnlyList<string> allowedNames) {
|
---|
133 | var res = new RegressionProblemData(data, allowedNames, pd.TargetVariable);
|
---|
134 | res.TestPartition.Start = pd.TestPartition.Start;
|
---|
135 | res.TestPartition.End = pd.TestPartition.End;
|
---|
136 | res.TrainingPartition.Start = pd.TrainingPartition.Start;
|
---|
137 | res.TrainingPartition.End = pd.TrainingPartition.End;
|
---|
138 | res.Name = pd.Name;
|
---|
139 | return res;
|
---|
140 | }
|
---|
141 |
|
---|
142 | private IDataset CreateDataset(IDataset data, double[,] pcs) {
|
---|
143 | var n = ComponentNames;
|
---|
144 | var nDouble = data.DoubleVariables.Where(x => !VariableNames.Contains(x)).ToArray();
|
---|
145 | var nDateTime = data.DateTimeVariables.ToArray();
|
---|
146 | var nString = data.StringVariables.ToArray();
|
---|
147 |
|
---|
148 | IEnumerable<IList> nData = n.Select((_, x) => Enumerable.Range(0, pcs.GetLength(0)).Select(r => pcs[r, x]).ToList());
|
---|
149 | IEnumerable<IList> nDoubleData = nDouble.Select(x => data.GetDoubleValues(x).ToList());
|
---|
150 | IEnumerable<IList> nDateTimeData = nDateTime.Select(x => data.GetDateTimeValues(x).ToList());
|
---|
151 | IEnumerable<IList> nStringData = nString.Select(x => data.GetStringValues(x).ToList());
|
---|
152 |
|
---|
153 | return new Dataset(n.Concat(nDouble).Concat(nDateTime).Concat(nString), nData.Concat(nDoubleData).Concat(nDateTimeData).Concat(nStringData).ToArray());
|
---|
154 | }
|
---|
155 |
|
---|
156 | private IDataset CreateRevertedDataset(IDataset data, double[,] pcs) {
|
---|
157 | var n = VariableNames;
|
---|
158 | var nDouble = data.DoubleVariables.Where(x => !ComponentNames.Contains(x)).ToArray();
|
---|
159 | var nDateTime = data.DateTimeVariables.ToArray();
|
---|
160 | var nString = data.StringVariables.ToArray();
|
---|
161 |
|
---|
162 | IEnumerable<IList> nData = n.Select((_, x) => Enumerable.Range(0, pcs.GetLength(0)).Select(r => pcs[r, x]).ToList());
|
---|
163 | IEnumerable<IList> nDoubleData = nDouble.Select(x => data.GetDoubleValues(x).ToList());
|
---|
164 | IEnumerable<IList> nDateTimeData = nDateTime.Select(x => data.GetDateTimeValues(x).ToList());
|
---|
165 | IEnumerable<IList> nStringData = nString.Select(x => data.GetStringValues(x).ToList());
|
---|
166 |
|
---|
167 | return new Dataset(n.Concat(nDouble).Concat(nDateTime).Concat(nString), nData.Concat(nDoubleData).Concat(nDateTimeData).Concat(nStringData).ToArray());
|
---|
168 | }
|
---|
169 |
|
---|
170 | private void BuildPca(IDataset dataset, IEnumerable<int> rows, IEnumerable<string> variables, bool normalize) {
|
---|
171 | var instances = rows.ToArray();
|
---|
172 | var attributes = variables.ToArray();
|
---|
173 | Means = normalize
|
---|
174 | ? attributes.Select(v => dataset.GetDoubleValues(v, instances).Average()).ToArray()
|
---|
175 | : attributes.Select(x => 0.0).ToArray();
|
---|
176 | Deviations = normalize
|
---|
177 | ? attributes.Select(v => dataset.GetDoubleValues(v, instances).StandardDeviationPop()).Select(x => x.IsAlmost(0.0) ? 1 : x).ToArray()
|
---|
178 | : attributes.Select(x => 1.0).ToArray();
|
---|
179 |
|
---|
180 | var data = new double[instances.Length, attributes.Length];
|
---|
181 |
|
---|
182 | for (var j = 0; j < attributes.Length; j++) {
|
---|
183 | var i = 0;
|
---|
184 | foreach (var v in dataset.GetDoubleValues(attributes[j], instances)) {
|
---|
185 | data[i, j] = (v - Means[j]) / Deviations[j];
|
---|
186 | i++;
|
---|
187 | }
|
---|
188 | }
|
---|
189 |
|
---|
190 | int info;
|
---|
191 | double[] variances;
|
---|
192 | double[,] matrix;
|
---|
193 | alglib.pcabuildbasis(data, instances.Length, attributes.Length, out info, out variances, out matrix);
|
---|
194 | Matrix = matrix;
|
---|
195 | Variances = variances;
|
---|
196 | VariableNames = attributes;
|
---|
197 | }
|
---|
198 | #endregion
|
---|
199 | }
|
---|
200 | } |
---|