1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.GP.StructureIdentification;
|
---|
23 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
24 | using HeuristicLab.GP.Interfaces;
|
---|
25 | using System.IO;
|
---|
26 | using HeuristicLab.DataAnalysis;
|
---|
27 | using System;
|
---|
28 | using HeuristicLab.Random;
|
---|
29 | using System.Collections.Generic;
|
---|
30 | using HeuristicLab.GP.Operators;
|
---|
31 | using System.Diagnostics;
|
---|
32 | using HeuristicLab.Core;
|
---|
33 | namespace HeuristicLab.GP.Test {
|
---|
34 |
|
---|
35 |
|
---|
36 | [TestClass()]
|
---|
37 | public class TournamentPruningTest {
|
---|
38 | private TestContext testContextInstance;
|
---|
39 |
|
---|
40 | /// <summary>
|
---|
41 | ///Gets or sets the test context which provides
|
---|
42 | ///information about and functionality for the current test run.
|
---|
43 | ///</summary>
|
---|
44 | public TestContext TestContext {
|
---|
45 | get {
|
---|
46 | return testContextInstance;
|
---|
47 | }
|
---|
48 | set {
|
---|
49 | testContextInstance = value;
|
---|
50 | }
|
---|
51 | }
|
---|
52 |
|
---|
53 | [TestMethod()]
|
---|
54 | public void TournamentPruningPruneTest() {
|
---|
55 | IRandom random = new MersenneTwister();
|
---|
56 |
|
---|
57 | Dataset ds = new Dataset(new double[,] {
|
---|
58 | { 1.0, 1.0, 1.0 },
|
---|
59 | { 2.0, 2.0, 2.0 },
|
---|
60 | { 3.0, 1.0, 2.0 }
|
---|
61 | });
|
---|
62 |
|
---|
63 | ds.SetVariableName(0, "y");
|
---|
64 | ds.SetVariableName(1, "a");
|
---|
65 | ds.SetVariableName(2, "b");
|
---|
66 |
|
---|
67 | var importer = new SymbolicExpressionImporter();
|
---|
68 | HL3TreeEvaluator evaluator = new HL3TreeEvaluator();
|
---|
69 |
|
---|
70 |
|
---|
71 | IFunctionTree prunedTree = null;
|
---|
72 | prunedTree = TournamentPruning.Prune(random, importer.Import("(+ 1.5 3.5)"), 3, ds, "y", 0, 2, evaluator, 1.0, 1.0);
|
---|
73 | prunedTree = TournamentPruning.Prune(random, importer.Import("(+ (variable 2.0 a 0) (+ 1.5 3.5))"), 3, ds, "y", 0, 2, evaluator, 1.0, 1.0);
|
---|
74 | prunedTree = TournamentPruning.Prune(random, importer.Import("(+ (variable 2.0 a 0) (variable 0.00001 a 0))"), 3, ds, "y", 0, 2, evaluator, 1.0, 1.0);
|
---|
75 | prunedTree = TournamentPruning.Prune(random, importer.Import("(+ (variable 1.0 a 0) (variable 1.0 b 0))"), 3, ds, "y", 0, 2, evaluator, 1.0, 1.0);
|
---|
76 | }
|
---|
77 | }
|
---|
78 | }
|
---|