1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.GP.Interfaces;
|
---|
27 | using System;
|
---|
28 | using HeuristicLab.DataAnalysis;
|
---|
29 | using HeuristicLab.Modeling;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
32 | public class TournamentPruning : OperatorBase {
|
---|
33 | public TournamentPruning()
|
---|
34 | : base() {
|
---|
35 | AddVariableInfo(new VariableInfo("Random", "", typeof(IRandom), VariableKind.In));
|
---|
36 | AddVariableInfo(new VariableInfo("FunctionTree", "The tree to analyse", typeof(IGeneticProgrammingModel), VariableKind.In));
|
---|
37 | AddVariableInfo(new VariableInfo("Dataset", "Dataset", typeof(Dataset), VariableKind.In));
|
---|
38 | AddVariableInfo(new VariableInfo("TargetVariable", "", typeof(StringData), VariableKind.In));
|
---|
39 | AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Samples start", typeof(IntData), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "Samples end", typeof(IntData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("TreeEvaluator", "", typeof(ITreeEvaluator), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("MaxPruningRatio", "Maximale relative size of the pruned branch", typeof(DoubleData), VariableKind.In));
|
---|
43 | AddVariableInfo(new VariableInfo("TournamentSize", "Number of branches to compare for pruning", typeof(IntData), VariableKind.
|
---|
44 | In));
|
---|
45 | AddVariableInfo(new VariableInfo("PopulationPercentileStart", "", typeof(DoubleData), VariableKind.In));
|
---|
46 | AddVariableInfo(new VariableInfo("PopulationPercentileEnd", "", typeof(DoubleData), VariableKind.In));
|
---|
47 | AddVariableInfo(new VariableInfo("QualityGainWeight", "", typeof(DoubleData), VariableKind.In));
|
---|
48 | }
|
---|
49 |
|
---|
50 | public override IOperation Apply(IScope scope) {
|
---|
51 | IRandom random = scope.GetVariableValue<IRandom>("Random", true);
|
---|
52 | double percentileStart = scope.GetVariableValue<DoubleData>("PopulationPercentileStart", true).Data;
|
---|
53 | double percentileEnd = scope.GetVariableValue<DoubleData>("PopulationPercentileEnd", true).Data;
|
---|
54 | int tournamentSize = scope.GetVariableValue<IntData>("TournamentSize", true).Data;
|
---|
55 | Dataset dataset = scope.GetVariableValue<Dataset>("Dataset", true);
|
---|
56 | string targetVariable = scope.GetVariableValue<StringData>("TargetVariable", true).Data;
|
---|
57 | int samplesStart = scope.GetVariableValue<IntData>("TrainingSamplesStart", true).Data;
|
---|
58 | int samplesEnd = scope.GetVariableValue<IntData>("TrainingSamplesEnd", true).Data;
|
---|
59 | ITreeEvaluator evaluator = scope.GetVariableValue<ITreeEvaluator>("TreeEvaluator", true);
|
---|
60 | double maxPruningRatio = scope.GetVariableValue<DoubleData>("MaxPruningRatio", true).Data;
|
---|
61 | double qualityGainWeight = scope.GetVariableValue<DoubleData>("QualityGainWeight", true).Data;
|
---|
62 | int n = scope.SubScopes.Count;
|
---|
63 | // for each tree in the given percentile
|
---|
64 | var trees = (from subScope in scope.SubScopes
|
---|
65 | select subScope.GetVariableValue<IGeneticProgrammingModel>("FunctionTree", false))
|
---|
66 | .Skip((int)(n * percentileStart))
|
---|
67 | .Take((int)(n * (percentileEnd - percentileStart)));
|
---|
68 | foreach (var tree in trees) {
|
---|
69 | tree.FunctionTree = Prune(random, tree.FunctionTree, tournamentSize, dataset, targetVariable, samplesStart, samplesEnd, evaluator, maxPruningRatio, qualityGainWeight);
|
---|
70 | }
|
---|
71 | return null;
|
---|
72 | }
|
---|
73 |
|
---|
74 | public static IFunctionTree Prune(IRandom random, IFunctionTree tree, int tournamentSize,
|
---|
75 | Dataset dataset, string targetVariable, int samplesStart, int samplesEnd, ITreeEvaluator evaluator,
|
---|
76 | double maxPruningRatio, double qualityGainWeight) {
|
---|
77 | var evaluatedRows = Enumerable.Range(samplesStart, samplesEnd - samplesStart);
|
---|
78 | var estimatedValues = evaluator.Evaluate(dataset, tree, evaluatedRows).ToArray();
|
---|
79 | var targetValues = dataset.GetVariableValues(targetVariable, samplesStart, samplesEnd);
|
---|
80 | int originalSize = tree.GetSize();
|
---|
81 | double originalMse = SimpleMSEEvaluator.Calculate(Matrix<double>.Create(targetValues, estimatedValues));
|
---|
82 |
|
---|
83 | int maxPrunedBranchSize = (int)(tree.GetSize() * maxPruningRatio);
|
---|
84 |
|
---|
85 |
|
---|
86 | IFunctionTree bestTree = tree;
|
---|
87 | double bestGain = double.PositiveInfinity;
|
---|
88 |
|
---|
89 | for (int i = 0; i < tournamentSize; i++) {
|
---|
90 | var clonedTree = (IFunctionTree)tree.Clone();
|
---|
91 | var prunePoints = (from node in FunctionTreeIterator.IteratePrefix(clonedTree)
|
---|
92 | from subTree in node.SubTrees
|
---|
93 | where subTree.GetSize() <= maxPrunedBranchSize
|
---|
94 | select new { Parent = node, Branch = subTree, SubTreeIndex = node.SubTrees.IndexOf(subTree) })
|
---|
95 | .ToList();
|
---|
96 |
|
---|
97 | var selectedPrunePoint = prunePoints[random.Next(prunePoints.Count)];
|
---|
98 | var branchValues = evaluator.Evaluate(dataset, selectedPrunePoint.Branch, evaluatedRows);
|
---|
99 | var branchMean = branchValues.Average();
|
---|
100 |
|
---|
101 | selectedPrunePoint.Parent.RemoveSubTree(selectedPrunePoint.SubTreeIndex);
|
---|
102 | var constNode = CreateConstant(branchMean);
|
---|
103 | selectedPrunePoint.Parent.InsertSubTree(selectedPrunePoint.SubTreeIndex, constNode);
|
---|
104 |
|
---|
105 | estimatedValues = evaluator.Evaluate(dataset, clonedTree, evaluatedRows).ToArray();
|
---|
106 | double prunedMse = SimpleMSEEvaluator.Calculate(Matrix<double>.Create(targetValues, estimatedValues));
|
---|
107 | double prunedSize = clonedTree.GetSize();
|
---|
108 | // MSE of the pruned tree is larger than the original tree in most cases
|
---|
109 | // size of the pruned tree is always smaller than the size of the original tree
|
---|
110 | // same change in quality => prefer pruning operation that removes a larger tree
|
---|
111 | double gain = ((prunedMse / originalMse) * qualityGainWeight) /
|
---|
112 | (originalSize / prunedSize);
|
---|
113 | if (gain < bestGain) {
|
---|
114 | bestGain = gain;
|
---|
115 | bestTree = clonedTree;
|
---|
116 | }
|
---|
117 | }
|
---|
118 |
|
---|
119 | return bestTree;
|
---|
120 | }
|
---|
121 |
|
---|
122 | private static FunctionTree CreateConstant(double constantValue) {
|
---|
123 | var node = (ConstantFunctionTree)(new Constant()).GetTreeNode();
|
---|
124 | node.Value = constantValue;
|
---|
125 | return node;
|
---|
126 | }
|
---|
127 | }
|
---|
128 | }
|
---|