[3874] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.GP.Interfaces;
|
---|
| 27 | using System;
|
---|
| 28 | using HeuristicLab.DataAnalysis;
|
---|
| 29 | using HeuristicLab.Modeling;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
| 32 | public class TournamentPruning : OperatorBase {
|
---|
| 33 | public TournamentPruning()
|
---|
| 34 | : base() {
|
---|
| 35 | AddVariableInfo(new VariableInfo("Random", "", typeof(IRandom), VariableKind.In));
|
---|
| 36 | AddVariableInfo(new VariableInfo("FunctionTree", "The tree to analyse", typeof(IGeneticProgrammingModel), VariableKind.In));
|
---|
| 37 | AddVariableInfo(new VariableInfo("Dataset", "Dataset", typeof(Dataset), VariableKind.In));
|
---|
| 38 | AddVariableInfo(new VariableInfo("TargetVariable", "", typeof(StringData), VariableKind.In));
|
---|
| 39 | AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Samples start", typeof(IntData), VariableKind.In));
|
---|
| 40 | AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "Samples end", typeof(IntData), VariableKind.In));
|
---|
| 41 | AddVariableInfo(new VariableInfo("TreeEvaluator", "", typeof(ITreeEvaluator), VariableKind.In));
|
---|
| 42 | AddVariableInfo(new VariableInfo("MaxPruningRatio", "Maximale relative size of the pruned branch", typeof(DoubleData), VariableKind.In));
|
---|
| 43 | AddVariableInfo(new VariableInfo("TournamentSize", "Number of branches to compare for pruning", typeof(IntData), VariableKind.
|
---|
| 44 | In));
|
---|
| 45 | AddVariableInfo(new VariableInfo("PopulationPercentileStart", "", typeof(DoubleData), VariableKind.In));
|
---|
| 46 | AddVariableInfo(new VariableInfo("PopulationPercentileEnd", "", typeof(DoubleData), VariableKind.In));
|
---|
| 47 | AddVariableInfo(new VariableInfo("QualityGainWeight", "", typeof(DoubleData), VariableKind.In));
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | public override IOperation Apply(IScope scope) {
|
---|
| 51 | IRandom random = scope.GetVariableValue<IRandom>("Random", true);
|
---|
| 52 | double percentileStart = scope.GetVariableValue<DoubleData>("PopulationPercentileStart", true).Data;
|
---|
| 53 | double percentileEnd = scope.GetVariableValue<DoubleData>("PopulationPercentileEnd", true).Data;
|
---|
| 54 | int tournamentSize = scope.GetVariableValue<IntData>("TournamentSize", true).Data;
|
---|
| 55 | Dataset dataset = scope.GetVariableValue<Dataset>("Dataset", true);
|
---|
| 56 | string targetVariable = scope.GetVariableValue<StringData>("TargetVariable", true).Data;
|
---|
| 57 | int samplesStart = scope.GetVariableValue<IntData>("TrainingSamplesStart", true).Data;
|
---|
| 58 | int samplesEnd = scope.GetVariableValue<IntData>("TrainingSamplesEnd", true).Data;
|
---|
| 59 | ITreeEvaluator evaluator = scope.GetVariableValue<ITreeEvaluator>("TreeEvaluator", true);
|
---|
| 60 | double maxPruningRatio = scope.GetVariableValue<DoubleData>("MaxPruningRatio", true).Data;
|
---|
| 61 | double qualityGainWeight = scope.GetVariableValue<DoubleData>("QualityGainWeight", true).Data;
|
---|
| 62 | int n = scope.SubScopes.Count;
|
---|
| 63 | // for each tree in the given percentile
|
---|
| 64 | var trees = (from subScope in scope.SubScopes
|
---|
| 65 | select subScope.GetVariableValue<IGeneticProgrammingModel>("FunctionTree", false))
|
---|
| 66 | .Skip((int)(n * percentileStart))
|
---|
| 67 | .Take((int)(n * (percentileEnd - percentileStart)));
|
---|
| 68 | foreach (var tree in trees) {
|
---|
| 69 | tree.FunctionTree = Prune(random, tree.FunctionTree, tournamentSize, dataset, targetVariable, samplesStart, samplesEnd, evaluator, maxPruningRatio, qualityGainWeight);
|
---|
| 70 | }
|
---|
| 71 | return null;
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | public static IFunctionTree Prune(IRandom random, IFunctionTree tree, int tournamentSize,
|
---|
| 75 | Dataset dataset, string targetVariable, int samplesStart, int samplesEnd, ITreeEvaluator evaluator,
|
---|
| 76 | double maxPruningRatio, double qualityGainWeight) {
|
---|
| 77 | var evaluatedRows = Enumerable.Range(samplesStart, samplesEnd - samplesStart);
|
---|
| 78 | var estimatedValues = evaluator.Evaluate(dataset, tree, evaluatedRows).ToArray();
|
---|
| 79 | var targetValues = dataset.GetVariableValues(targetVariable, samplesStart, samplesEnd);
|
---|
| 80 | int originalSize = tree.GetSize();
|
---|
| 81 | double originalMse = SimpleMSEEvaluator.Calculate(Matrix<double>.Create(targetValues, estimatedValues));
|
---|
| 82 |
|
---|
| 83 | int maxPrunedBranchSize = (int)(tree.GetSize() * maxPruningRatio);
|
---|
| 84 |
|
---|
| 85 |
|
---|
| 86 | IFunctionTree bestTree = tree;
|
---|
| 87 | double bestGain = double.PositiveInfinity;
|
---|
| 88 |
|
---|
| 89 | for (int i = 0; i < tournamentSize; i++) {
|
---|
| 90 | var clonedTree = (IFunctionTree)tree.Clone();
|
---|
| 91 | var prunePoints = (from node in FunctionTreeIterator.IteratePrefix(clonedTree)
|
---|
| 92 | from subTree in node.SubTrees
|
---|
| 93 | where subTree.GetSize() <= maxPrunedBranchSize
|
---|
| 94 | select new { Parent = node, Branch = subTree, SubTreeIndex = node.SubTrees.IndexOf(subTree) })
|
---|
| 95 | .ToList();
|
---|
| 96 |
|
---|
| 97 | var selectedPrunePoint = prunePoints[random.Next(prunePoints.Count)];
|
---|
| 98 | var branchValues = evaluator.Evaluate(dataset, selectedPrunePoint.Branch, evaluatedRows);
|
---|
| 99 | var branchMean = branchValues.Average();
|
---|
| 100 |
|
---|
| 101 | selectedPrunePoint.Parent.RemoveSubTree(selectedPrunePoint.SubTreeIndex);
|
---|
| 102 | var constNode = CreateConstant(branchMean);
|
---|
| 103 | selectedPrunePoint.Parent.InsertSubTree(selectedPrunePoint.SubTreeIndex, constNode);
|
---|
| 104 |
|
---|
| 105 | estimatedValues = evaluator.Evaluate(dataset, clonedTree, evaluatedRows).ToArray();
|
---|
| 106 | double prunedMse = SimpleMSEEvaluator.Calculate(Matrix<double>.Create(targetValues, estimatedValues));
|
---|
| 107 | double prunedSize = clonedTree.GetSize();
|
---|
| 108 | // MSE of the pruned tree is larger than the original tree in most cases
|
---|
| 109 | // size of the pruned tree is always smaller than the size of the original tree
|
---|
| 110 | // same change in quality => prefer pruning operation that removes a larger tree
|
---|
| 111 | double gain = ((prunedMse / originalMse) * qualityGainWeight) /
|
---|
| 112 | (originalSize / prunedSize);
|
---|
| 113 | if (gain < bestGain) {
|
---|
| 114 | bestGain = gain;
|
---|
| 115 | bestTree = clonedTree;
|
---|
| 116 | }
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | return bestTree;
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 | private static FunctionTree CreateConstant(double constantValue) {
|
---|
| 123 | var node = (ConstantFunctionTree)(new Constant()).GetTreeNode();
|
---|
| 124 | node.Value = constantValue;
|
---|
| 125 | return node;
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 | }
|
---|