Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3.2/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/EarlyStoppingMeanSquaredErrorEvaluator.cs @ 17712

Last change on this file since 17712 was 2578, checked in by gkronber, 15 years ago

Implemented #824 (Refactor: ITreeEvaluator interface to provide a method that evaluates a tree on a range of samples.)

File size: 3.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Core;
23using HeuristicLab.Data;
24using System;
25using HeuristicLab.GP.Interfaces;
26using HeuristicLab.DataAnalysis;
27using System.Collections;
28using System.Collections.Generic;
29using System.Linq;
30
31namespace HeuristicLab.GP.StructureIdentification {
32  public class EarlyStoppingMeanSquaredErrorEvaluator : MeanSquaredErrorEvaluator {
33    public override string Description {
34      get {
35        return @"Evaluates 'FunctionTree' for all samples of the dataset and calculates the mean-squared-error
36for the estimated values vs. the real values of 'TargetVariable'.
37This operator stops the computation as soon as an upper limit for the mean-squared-error is reached.";
38      }
39    }
40
41    public EarlyStoppingMeanSquaredErrorEvaluator()
42      : base() {
43      AddVariableInfo(new VariableInfo("QualityLimit", "The upper limit of the MSE which is used as early stopping criterion.", typeof(DoubleData), VariableKind.In));
44    }
45
46    // evaluates the function-tree for the given target-variable and the whole dataset and returns the MSE
47    public override void Evaluate(IScope scope, IFunctionTree tree, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end) {
48      double qualityLimit = GetVariableValue<DoubleData>("QualityLimit", scope, true).Data;
49      DoubleData mse = GetVariableValue<DoubleData>("MSE", scope, false, false);
50      if (mse == null) {
51        mse = new DoubleData();
52        scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("MSE"), mse));
53      }
54      double errorsSquaredSum = 0;
55      int rows = end - start;
56      int n = 0;
57      int sample = start;
58      foreach (var estimatedValue in evaluator.Evaluate(dataset, tree, Enumerable.Range(start, end - start))) {
59        double original = dataset.GetValue(sample, targetVariable);
60
61        if (!double.IsNaN(original) && !double.IsInfinity(original)) {
62          double error = estimatedValue - original;
63          errorsSquaredSum += error * error;
64          n++;
65        }
66        // check the limit every 30 samples and stop as soon as we hit the limit
67        if (n % 30 == 29 && errorsSquaredSum / rows >= qualityLimit) {
68          mse.Data = errorsSquaredSum / (n + 1); // return estimated MSE (when the remaining errors are on average the same)
69          return;
70        }
71        sample++;
72      }
73      errorsSquaredSum /= n;
74      if (double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
75        errorsSquaredSum = double.MaxValue;
76      }
77
78      mse.Data = errorsSquaredSum;
79    }
80  }
81}
Note: See TracBrowser for help on using the repository browser.