Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3.2/sources/HeuristicLab.GP.StructureIdentification.ConditionalEvaluation/3.3/ConditionalSimpleEvaluator.cs @ 10347

Last change on this file since 10347 was 2578, checked in by gkronber, 15 years ago

Implemented #824 (Refactor: ITreeEvaluator interface to provide a method that evaluates a tree on a range of samples.)

File size: 3.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.DataAnalysis;
29using HeuristicLab.GP.Interfaces;
30
31namespace HeuristicLab.GP.StructureIdentification.ConditionalEvaluation {
32  public class ConditionalSimpleEvaluator : GPEvaluatorBase {
33    public ConditionalSimpleEvaluator()
34      : base() {
35      AddVariableInfo(new VariableInfo("MaxTimeOffset", "Maximal time offset for all feature", typeof(IntData), VariableKind.In));
36      AddVariableInfo(new VariableInfo("MinTimeOffset", "Minimal time offset for all feature", typeof(IntData), VariableKind.In));
37      AddVariableInfo(new VariableInfo("ConditionVariable", "Variable index which indicates if the row should be evaluated (0 means do not evaluate, != 0 evaluate)", typeof(IntData), VariableKind.In));
38      AddVariableInfo(new VariableInfo("Values", "The values of the target variable as predicted by the model and the original value of the target variable", typeof(ItemList), VariableKind.New | VariableKind.Out));
39    }
40
41    public override void Evaluate(IScope scope, IFunctionTree tree, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end) {
42      ItemList values = GetVariableValue<ItemList>("Values", scope, false, false);
43      if (values == null) {
44        values = new ItemList();
45        IVariableInfo info = GetVariableInfo("Values");
46        if (info.Local)
47          AddVariable(new HeuristicLab.Core.Variable(info.ActualName, values));
48        else
49          scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(info.FormalName), values));
50      }
51      values.Clear();
52
53      int maxTimeOffset = GetVariableValue<IntData>("MaxTimeOffset", scope, true).Data;
54      int minTimeOffset = GetVariableValue<IntData>("MinTimeOffset", scope, true).Data;
55      int conditionVariable = GetVariableValue<IntData>("ConditionVariable", scope, true).Data;
56
57      var rows = from row in Enumerable.Range(start, end - start)
58                 // check if condition variable is true between sample - minTimeOffset and sample - maxTimeOffset
59                 // => select rows where the value of the condition variable is different from zero in the whole range
60                 where (from neighbour in Enumerable.Range(row + minTimeOffset, maxTimeOffset - minTimeOffset)
61                        let value = dataset.GetValue(neighbour, conditionVariable)
62                        where value == 0
63                        select neighbour).Any() == false
64                 select row;
65
66
67      double[] estimatedValues = evaluator.Evaluate(dataset, tree, rows).ToArray();
68      double[] originalValues = (from row in rows select dataset.GetValue(row, targetVariable)).ToArray();
69      for (int i = 0; i < rows.Count(); i++) {
70        ItemList row = new ItemList();
71        row.Add(new DoubleData(estimatedValues[i]));
72        row.Add(new DoubleData(originalValues[i]));
73        values.Add(row);
74      }
75
76      scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data -= (end - start) - rows.Count();
77    }
78  }
79}
Note: See TracBrowser for help on using the repository browser.