1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.GP.Interfaces;
|
---|
27 | using System.Linq;
|
---|
28 | using HeuristicLab.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.GP.StructureIdentification.Classification {
|
---|
31 | public class ClassificationMeanSquaredErrorEvaluator : GPClassificationEvaluatorBase {
|
---|
32 | private const double EPSILON = 1.0E-7;
|
---|
33 | public override string Description {
|
---|
34 | get {
|
---|
35 | return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates the mean-squared-error
|
---|
36 | for the estimated values vs. the real values of 'TargetVariable'.";
|
---|
37 | }
|
---|
38 | }
|
---|
39 |
|
---|
40 | public ClassificationMeanSquaredErrorEvaluator()
|
---|
41 | : base() {
|
---|
42 | AddVariableInfo(new VariableInfo("MSE", "The mean squared error of the model", typeof(DoubleData), VariableKind.New));
|
---|
43 | }
|
---|
44 |
|
---|
45 | public override void Evaluate(IScope scope, IFunctionTree tree, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) {
|
---|
46 | double errorsSquaredSum = 0;
|
---|
47 | double[] estimatedValues = evaluator.Evaluate(dataset, tree, Enumerable.Range(start, end - start)).ToArray();
|
---|
48 | for (int sample = start; sample < end; sample++) {
|
---|
49 | double original = dataset.GetValue(sample, targetVariable);
|
---|
50 | if (!double.IsNaN(original) && !double.IsInfinity(original)) {
|
---|
51 | double error = estimatedValues[sample - start] - original;
|
---|
52 | // between classes use squared error
|
---|
53 | // on the lower end and upper end only add linear error if the absolute error is larger than 1
|
---|
54 | // the error>1.0 constraint is needed for balance because in the interval ]-1, 1[ the squared error is smaller than the absolute error
|
---|
55 | if ((original.IsAlmost(classes[0]) && error < -1.0) ||
|
---|
56 | (original.IsAlmost(classes[classes.Length - 1]) && error > 1.0)) {
|
---|
57 | errorsSquaredSum += Math.Abs(error); // only add linear error below the smallest class or above the largest class
|
---|
58 | } else {
|
---|
59 | errorsSquaredSum += error * error;
|
---|
60 | }
|
---|
61 | }
|
---|
62 |
|
---|
63 | }
|
---|
64 |
|
---|
65 | errorsSquaredSum /= (end - start);
|
---|
66 | if (double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
|
---|
67 | errorsSquaredSum = double.MaxValue;
|
---|
68 | }
|
---|
69 |
|
---|
70 | DoubleData mse = GetVariableValue<DoubleData>("MSE", scope, false, false);
|
---|
71 | if (mse == null) {
|
---|
72 | mse = new DoubleData();
|
---|
73 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("MSE"), mse));
|
---|
74 | }
|
---|
75 |
|
---|
76 | mse.Data = errorsSquaredSum;
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|