1 | /*
|
---|
2 | * SVM.NET Library
|
---|
3 | * Copyright (C) 2008 Matthew Johnson
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 |
|
---|
20 | using System;
|
---|
21 | using System.IO;
|
---|
22 | using System.Diagnostics;
|
---|
23 |
|
---|
24 | namespace SVM
|
---|
25 | {
|
---|
26 | /// <summary>
|
---|
27 | /// Class containing the routines to perform class membership prediction using a trained SVM.
|
---|
28 | /// </summary>
|
---|
29 | public static class Prediction
|
---|
30 | {
|
---|
31 | /// <summary>
|
---|
32 | /// Predicts the class memberships of all the vectors in the problem.
|
---|
33 | /// </summary>
|
---|
34 | /// <param name="problem">The SVM Problem to solve</param>
|
---|
35 | /// <param name="outputFile">File for result output</param>
|
---|
36 | /// <param name="model">The Model to use</param>
|
---|
37 | /// <param name="predict_probability">Whether to output a distribution over the classes</param>
|
---|
38 | /// <returns>Percentage correctly labelled</returns>
|
---|
39 | public static double Predict(
|
---|
40 | Problem problem,
|
---|
41 | string outputFile,
|
---|
42 | Model model,
|
---|
43 | bool predict_probability)
|
---|
44 | {
|
---|
45 | int correct = 0;
|
---|
46 | int total = 0;
|
---|
47 | double error = 0;
|
---|
48 | double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
|
---|
49 | StreamWriter output = outputFile != null ? new StreamWriter(outputFile) : null;
|
---|
50 |
|
---|
51 | SvmType svm_type = Procedures.svm_get_svm_type(model);
|
---|
52 | int nr_class = Procedures.svm_get_nr_class(model);
|
---|
53 | int[] labels = new int[nr_class];
|
---|
54 | double[] prob_estimates = null;
|
---|
55 |
|
---|
56 | if (predict_probability)
|
---|
57 | {
|
---|
58 | if (svm_type == SvmType.EPSILON_SVR || svm_type == SvmType.NU_SVR)
|
---|
59 | {
|
---|
60 | Console.WriteLine("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + Procedures.svm_get_svr_probability(model));
|
---|
61 | }
|
---|
62 | else
|
---|
63 | {
|
---|
64 | Procedures.svm_get_labels(model, labels);
|
---|
65 | prob_estimates = new double[nr_class];
|
---|
66 | if (output != null)
|
---|
67 | {
|
---|
68 | output.Write("labels");
|
---|
69 | for (int j = 0; j < nr_class; j++)
|
---|
70 | {
|
---|
71 | output.Write(" " + labels[j]);
|
---|
72 | }
|
---|
73 | output.Write("\n");
|
---|
74 | }
|
---|
75 | }
|
---|
76 | }
|
---|
77 | for (int i = 0; i < problem.Count; i++)
|
---|
78 | {
|
---|
79 | double target = problem.Y[i];
|
---|
80 | Node[] x = problem.X[i];
|
---|
81 |
|
---|
82 | double v;
|
---|
83 | if (predict_probability && (svm_type == SvmType.C_SVC || svm_type == SvmType.NU_SVC))
|
---|
84 | {
|
---|
85 | v = Procedures.svm_predict_probability(model, x, prob_estimates);
|
---|
86 | if (output != null)
|
---|
87 | {
|
---|
88 | output.Write(v + " ");
|
---|
89 | for (int j = 0; j < nr_class; j++)
|
---|
90 | {
|
---|
91 | output.Write(prob_estimates[j] + " ");
|
---|
92 | }
|
---|
93 | output.Write("\n");
|
---|
94 | }
|
---|
95 | }
|
---|
96 | else
|
---|
97 | {
|
---|
98 | v = Procedures.svm_predict(model, x);
|
---|
99 | if(output != null)
|
---|
100 | output.Write(v + "\n");
|
---|
101 | }
|
---|
102 |
|
---|
103 | if (v == target)
|
---|
104 | ++correct;
|
---|
105 | error += (v - target) * (v - target);
|
---|
106 | sumv += v;
|
---|
107 | sumy += target;
|
---|
108 | sumvv += v * v;
|
---|
109 | sumyy += target * target;
|
---|
110 | sumvy += v * target;
|
---|
111 | ++total;
|
---|
112 | }
|
---|
113 | if(output != null)
|
---|
114 | output.Close();
|
---|
115 | return (double)correct / total;
|
---|
116 | }
|
---|
117 |
|
---|
118 | /// <summary>
|
---|
119 | /// Predict the class for a single input vector.
|
---|
120 | /// </summary>
|
---|
121 | /// <param name="model">The Model to use for prediction</param>
|
---|
122 | /// <param name="x">The vector for which to predict class</param>
|
---|
123 | /// <returns>The result</returns>
|
---|
124 | public static double Predict(Model model, Node[] x)
|
---|
125 | {
|
---|
126 | return Procedures.svm_predict(model, x);
|
---|
127 | }
|
---|
128 |
|
---|
129 | /// <summary>
|
---|
130 | /// Predicts a class distribution for the single input vector.
|
---|
131 | /// </summary>
|
---|
132 | /// <param name="model">Model to use for prediction</param>
|
---|
133 | /// <param name="x">The vector for which to predict the class distribution</param>
|
---|
134 | /// <returns>A probability distribtion over classes</returns>
|
---|
135 | public static double[] PredictProbability(Model model, Node[] x)
|
---|
136 | {
|
---|
137 | SvmType svm_type = Procedures.svm_get_svm_type(model);
|
---|
138 | if (svm_type != SvmType.C_SVC && svm_type != SvmType.NU_SVC)
|
---|
139 | throw new Exception("Model type " + svm_type + " unable to predict probabilities.");
|
---|
140 | int nr_class = Procedures.svm_get_nr_class(model);
|
---|
141 | double[] probEstimates = new double[nr_class];
|
---|
142 | Procedures.svm_predict_probability(model, x, probEstimates);
|
---|
143 | return probEstimates;
|
---|
144 | }
|
---|
145 |
|
---|
146 | private static void exit_with_help()
|
---|
147 | {
|
---|
148 | Debug.Write("usage: svm_predict [options] test_file model_file output_file\n" + "options:\n" + "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n");
|
---|
149 | Environment.Exit(1);
|
---|
150 | }
|
---|
151 |
|
---|
152 | /// <summary>
|
---|
153 | /// Legacy method, provided to allow usage as though this were the command line version of libsvm.
|
---|
154 | /// </summary>
|
---|
155 | /// <param name="args">Standard arguments passed to the svm_predict exectutable. See libsvm documentation for details.</param>
|
---|
156 | [Obsolete("Use the other version of Predict() instead")]
|
---|
157 | public static void Predict(params string[] args)
|
---|
158 | {
|
---|
159 | int i = 0;
|
---|
160 | bool predictProbability = false;
|
---|
161 |
|
---|
162 | // parse options
|
---|
163 | for (i = 0; i < args.Length; i++)
|
---|
164 | {
|
---|
165 | if (args[i][0] != '-')
|
---|
166 | break;
|
---|
167 | ++i;
|
---|
168 | switch (args[i - 1][1])
|
---|
169 | {
|
---|
170 |
|
---|
171 | case 'b':
|
---|
172 | predictProbability = int.Parse(args[i]) == 1;
|
---|
173 | break;
|
---|
174 |
|
---|
175 | default:
|
---|
176 | throw new ArgumentException("Unknown option");
|
---|
177 |
|
---|
178 | }
|
---|
179 | }
|
---|
180 | if (i >= args.Length)
|
---|
181 | throw new ArgumentException("No input, model and output files provided");
|
---|
182 |
|
---|
183 | Problem problem = Problem.Read(args[i]);
|
---|
184 | Model model = Model.Read(args[i + 1]);
|
---|
185 | Predict(problem, args[i + 2], model, predictProbability);
|
---|
186 | }
|
---|
187 | }
|
---|
188 | } |
---|