1 | /*************************************************************************
|
---|
2 | Copyright (c) 2007-2008, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class mlptrain
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Training report:
|
---|
29 | * NGrad - number of gradient calculations
|
---|
30 | * NHess - number of Hessian calculations
|
---|
31 | * NCholesky - number of Cholesky decompositions
|
---|
32 | *************************************************************************/
|
---|
33 | public struct mlpreport
|
---|
34 | {
|
---|
35 | public int ngrad;
|
---|
36 | public int nhess;
|
---|
37 | public int ncholesky;
|
---|
38 | };
|
---|
39 |
|
---|
40 |
|
---|
41 | /*************************************************************************
|
---|
42 | Cross-validation estimates of generalization error
|
---|
43 | *************************************************************************/
|
---|
44 | public struct mlpcvreport
|
---|
45 | {
|
---|
46 | public double relclserror;
|
---|
47 | public double avgce;
|
---|
48 | public double rmserror;
|
---|
49 | public double avgerror;
|
---|
50 | public double avgrelerror;
|
---|
51 | };
|
---|
52 |
|
---|
53 |
|
---|
54 |
|
---|
55 |
|
---|
56 | public const double mindecay = 0.001;
|
---|
57 |
|
---|
58 |
|
---|
59 | /*************************************************************************
|
---|
60 | Neural network training using modified Levenberg-Marquardt with exact
|
---|
61 | Hessian calculation and regularization. Subroutine trains neural network
|
---|
62 | with restarts from random positions. Algorithm is well suited for small
|
---|
63 | and medium scale problems (hundreds of weights).
|
---|
64 |
|
---|
65 | INPUT PARAMETERS:
|
---|
66 | Network - neural network with initialized geometry
|
---|
67 | XY - training set
|
---|
68 | NPoints - training set size
|
---|
69 | Decay - weight decay constant, >=0.001
|
---|
70 | Decay term 'Decay*||Weights||^2' is added to error
|
---|
71 | function.
|
---|
72 | If you don't know what Decay to choose, use 0.001.
|
---|
73 | Restarts - number of restarts from random position, >0.
|
---|
74 | If you don't know what Restarts to choose, use 2.
|
---|
75 |
|
---|
76 | OUTPUT PARAMETERS:
|
---|
77 | Network - trained neural network.
|
---|
78 | Info - return code:
|
---|
79 | * -9, if internal matrix inverse subroutine failed
|
---|
80 | * -2, if there is a point with class number
|
---|
81 | outside of [0..NOut-1].
|
---|
82 | * -1, if wrong parameters specified
|
---|
83 | (NPoints<0, Restarts<1).
|
---|
84 | * 2, if task has been solved.
|
---|
85 | Rep - training report
|
---|
86 |
|
---|
87 | -- ALGLIB --
|
---|
88 | Copyright 10.03.2009 by Bochkanov Sergey
|
---|
89 | *************************************************************************/
|
---|
90 | public static void mlptrainlm(ref mlpbase.multilayerperceptron network,
|
---|
91 | ref double[,] xy,
|
---|
92 | int npoints,
|
---|
93 | double decay,
|
---|
94 | int restarts,
|
---|
95 | ref int info,
|
---|
96 | ref mlpreport rep)
|
---|
97 | {
|
---|
98 | int nin = 0;
|
---|
99 | int nout = 0;
|
---|
100 | int wcount = 0;
|
---|
101 | double lmftol = 0;
|
---|
102 | double lmsteptol = 0;
|
---|
103 | int i = 0;
|
---|
104 | int k = 0;
|
---|
105 | double v = 0;
|
---|
106 | double e = 0;
|
---|
107 | double enew = 0;
|
---|
108 | double xnorm2 = 0;
|
---|
109 | double stepnorm = 0;
|
---|
110 | double[] g = new double[0];
|
---|
111 | double[] d = new double[0];
|
---|
112 | double[,] h = new double[0,0];
|
---|
113 | double[,] hmod = new double[0,0];
|
---|
114 | double[,] z = new double[0,0];
|
---|
115 | bool spd = new bool();
|
---|
116 | double nu = 0;
|
---|
117 | double lambda = 0;
|
---|
118 | double lambdaup = 0;
|
---|
119 | double lambdadown = 0;
|
---|
120 | lbfgs.lbfgsreport internalrep = new lbfgs.lbfgsreport();
|
---|
121 | lbfgs.lbfgsstate state = new lbfgs.lbfgsstate();
|
---|
122 | double[] x = new double[0];
|
---|
123 | double[] y = new double[0];
|
---|
124 | double[] wbase = new double[0];
|
---|
125 | double[] wdir = new double[0];
|
---|
126 | double[] wt = new double[0];
|
---|
127 | double[] wx = new double[0];
|
---|
128 | int pass = 0;
|
---|
129 | double[] wbest = new double[0];
|
---|
130 | double ebest = 0;
|
---|
131 | int solverinfo = 0;
|
---|
132 | densesolver.densesolverreport solverrep = new densesolver.densesolverreport();
|
---|
133 | int i_ = 0;
|
---|
134 |
|
---|
135 | mlpbase.mlpproperties(ref network, ref nin, ref nout, ref wcount);
|
---|
136 | lambdaup = 10;
|
---|
137 | lambdadown = 0.3;
|
---|
138 | lmftol = 0.001;
|
---|
139 | lmsteptol = 0.001;
|
---|
140 |
|
---|
141 | //
|
---|
142 | // Test for inputs
|
---|
143 | //
|
---|
144 | if( npoints<=0 | restarts<1 )
|
---|
145 | {
|
---|
146 | info = -1;
|
---|
147 | return;
|
---|
148 | }
|
---|
149 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
150 | {
|
---|
151 | for(i=0; i<=npoints-1; i++)
|
---|
152 | {
|
---|
153 | if( (int)Math.Round(xy[i,nin])<0 | (int)Math.Round(xy[i,nin])>=nout )
|
---|
154 | {
|
---|
155 | info = -2;
|
---|
156 | return;
|
---|
157 | }
|
---|
158 | }
|
---|
159 | }
|
---|
160 | decay = Math.Max(decay, mindecay);
|
---|
161 | info = 2;
|
---|
162 |
|
---|
163 | //
|
---|
164 | // Initialize data
|
---|
165 | //
|
---|
166 | rep.ngrad = 0;
|
---|
167 | rep.nhess = 0;
|
---|
168 | rep.ncholesky = 0;
|
---|
169 |
|
---|
170 | //
|
---|
171 | // General case.
|
---|
172 | // Prepare task and network. Allocate space.
|
---|
173 | //
|
---|
174 | mlpbase.mlpinitpreprocessor(ref network, ref xy, npoints);
|
---|
175 | g = new double[wcount-1+1];
|
---|
176 | h = new double[wcount-1+1, wcount-1+1];
|
---|
177 | hmod = new double[wcount-1+1, wcount-1+1];
|
---|
178 | wbase = new double[wcount-1+1];
|
---|
179 | wdir = new double[wcount-1+1];
|
---|
180 | wbest = new double[wcount-1+1];
|
---|
181 | wt = new double[wcount-1+1];
|
---|
182 | wx = new double[wcount-1+1];
|
---|
183 | ebest = AP.Math.MaxRealNumber;
|
---|
184 |
|
---|
185 | //
|
---|
186 | // Multiple passes
|
---|
187 | //
|
---|
188 | for(pass=1; pass<=restarts; pass++)
|
---|
189 | {
|
---|
190 |
|
---|
191 | //
|
---|
192 | // Initialize weights
|
---|
193 | //
|
---|
194 | mlpbase.mlprandomize(ref network);
|
---|
195 |
|
---|
196 | //
|
---|
197 | // First stage of the hybrid algorithm: LBFGS
|
---|
198 | //
|
---|
199 | for(i_=0; i_<=wcount-1;i_++)
|
---|
200 | {
|
---|
201 | wbase[i_] = network.weights[i_];
|
---|
202 | }
|
---|
203 | lbfgs.minlbfgs(wcount, Math.Min(wcount, 5), ref wbase, 0.0, 0.0, 0.0, Math.Max(25, wcount), 0, ref state);
|
---|
204 | while( lbfgs.minlbfgsiteration(ref state) )
|
---|
205 | {
|
---|
206 |
|
---|
207 | //
|
---|
208 | // gradient
|
---|
209 | //
|
---|
210 | for(i_=0; i_<=wcount-1;i_++)
|
---|
211 | {
|
---|
212 | network.weights[i_] = state.x[i_];
|
---|
213 | }
|
---|
214 | mlpbase.mlpgradbatch(ref network, ref xy, npoints, ref state.f, ref state.g);
|
---|
215 |
|
---|
216 | //
|
---|
217 | // weight decay
|
---|
218 | //
|
---|
219 | v = 0.0;
|
---|
220 | for(i_=0; i_<=wcount-1;i_++)
|
---|
221 | {
|
---|
222 | v += network.weights[i_]*network.weights[i_];
|
---|
223 | }
|
---|
224 | state.f = state.f+0.5*decay*v;
|
---|
225 | for(i_=0; i_<=wcount-1;i_++)
|
---|
226 | {
|
---|
227 | state.g[i_] = state.g[i_] + decay*network.weights[i_];
|
---|
228 | }
|
---|
229 |
|
---|
230 | //
|
---|
231 | // next iteration
|
---|
232 | //
|
---|
233 | rep.ngrad = rep.ngrad+1;
|
---|
234 | }
|
---|
235 | lbfgs.minlbfgsresults(ref state, ref wbase, ref internalrep);
|
---|
236 | for(i_=0; i_<=wcount-1;i_++)
|
---|
237 | {
|
---|
238 | network.weights[i_] = wbase[i_];
|
---|
239 | }
|
---|
240 |
|
---|
241 | //
|
---|
242 | // Second stage of the hybrid algorithm: LM
|
---|
243 | //
|
---|
244 | // Initialize H with identity matrix,
|
---|
245 | // G with gradient,
|
---|
246 | // E with regularized error.
|
---|
247 | //
|
---|
248 | mlpbase.mlphessianbatch(ref network, ref xy, npoints, ref e, ref g, ref h);
|
---|
249 | v = 0.0;
|
---|
250 | for(i_=0; i_<=wcount-1;i_++)
|
---|
251 | {
|
---|
252 | v += network.weights[i_]*network.weights[i_];
|
---|
253 | }
|
---|
254 | e = e+0.5*decay*v;
|
---|
255 | for(i_=0; i_<=wcount-1;i_++)
|
---|
256 | {
|
---|
257 | g[i_] = g[i_] + decay*network.weights[i_];
|
---|
258 | }
|
---|
259 | for(k=0; k<=wcount-1; k++)
|
---|
260 | {
|
---|
261 | h[k,k] = h[k,k]+decay;
|
---|
262 | }
|
---|
263 | rep.nhess = rep.nhess+1;
|
---|
264 | lambda = 0.001;
|
---|
265 | nu = 2;
|
---|
266 | while( true )
|
---|
267 | {
|
---|
268 |
|
---|
269 | //
|
---|
270 | // 1. HMod = H+lambda*I
|
---|
271 | // 2. Try to solve (H+Lambda*I)*dx = -g.
|
---|
272 | // Increase lambda if left part is not positive definite.
|
---|
273 | //
|
---|
274 | for(i=0; i<=wcount-1; i++)
|
---|
275 | {
|
---|
276 | for(i_=0; i_<=wcount-1;i_++)
|
---|
277 | {
|
---|
278 | hmod[i,i_] = h[i,i_];
|
---|
279 | }
|
---|
280 | hmod[i,i] = hmod[i,i]+lambda;
|
---|
281 | }
|
---|
282 | spd = trfac.spdmatrixcholesky(ref hmod, wcount, true);
|
---|
283 | rep.ncholesky = rep.ncholesky+1;
|
---|
284 | if( !spd )
|
---|
285 | {
|
---|
286 | lambda = lambda*lambdaup*nu;
|
---|
287 | nu = nu*2;
|
---|
288 | continue;
|
---|
289 | }
|
---|
290 | densesolver.spdmatrixcholeskysolve(ref hmod, wcount, true, ref g, ref solverinfo, ref solverrep, ref wdir);
|
---|
291 | if( solverinfo<0 )
|
---|
292 | {
|
---|
293 | lambda = lambda*lambdaup*nu;
|
---|
294 | nu = nu*2;
|
---|
295 | continue;
|
---|
296 | }
|
---|
297 | for(i_=0; i_<=wcount-1;i_++)
|
---|
298 | {
|
---|
299 | wdir[i_] = -1*wdir[i_];
|
---|
300 | }
|
---|
301 |
|
---|
302 | //
|
---|
303 | // Lambda found.
|
---|
304 | // 1. Save old w in WBase
|
---|
305 | // 1. Test some stopping criterions
|
---|
306 | // 2. If error(w+wdir)>error(w), increase lambda
|
---|
307 | //
|
---|
308 | for(i_=0; i_<=wcount-1;i_++)
|
---|
309 | {
|
---|
310 | network.weights[i_] = network.weights[i_] + wdir[i_];
|
---|
311 | }
|
---|
312 | xnorm2 = 0.0;
|
---|
313 | for(i_=0; i_<=wcount-1;i_++)
|
---|
314 | {
|
---|
315 | xnorm2 += network.weights[i_]*network.weights[i_];
|
---|
316 | }
|
---|
317 | stepnorm = 0.0;
|
---|
318 | for(i_=0; i_<=wcount-1;i_++)
|
---|
319 | {
|
---|
320 | stepnorm += wdir[i_]*wdir[i_];
|
---|
321 | }
|
---|
322 | stepnorm = Math.Sqrt(stepnorm);
|
---|
323 | enew = mlpbase.mlperror(ref network, ref xy, npoints)+0.5*decay*xnorm2;
|
---|
324 | if( (double)(stepnorm)<(double)(lmsteptol*(1+Math.Sqrt(xnorm2))) )
|
---|
325 | {
|
---|
326 | break;
|
---|
327 | }
|
---|
328 | if( (double)(enew)>(double)(e) )
|
---|
329 | {
|
---|
330 | lambda = lambda*lambdaup*nu;
|
---|
331 | nu = nu*2;
|
---|
332 | continue;
|
---|
333 | }
|
---|
334 |
|
---|
335 | //
|
---|
336 | // Optimize using inv(cholesky(H)) as preconditioner
|
---|
337 | //
|
---|
338 | if( !trinverse.rmatrixtrinverse(ref hmod, wcount, true, false) )
|
---|
339 | {
|
---|
340 |
|
---|
341 | //
|
---|
342 | // if matrix can't be inverted then exit with errors
|
---|
343 | // TODO: make WCount steps in direction suggested by HMod
|
---|
344 | //
|
---|
345 | info = -9;
|
---|
346 | return;
|
---|
347 | }
|
---|
348 | for(i_=0; i_<=wcount-1;i_++)
|
---|
349 | {
|
---|
350 | wbase[i_] = network.weights[i_];
|
---|
351 | }
|
---|
352 | for(i=0; i<=wcount-1; i++)
|
---|
353 | {
|
---|
354 | wt[i] = 0;
|
---|
355 | }
|
---|
356 | lbfgs.minlbfgs(wcount, wcount, ref wt, 0.0, 0.0, 0.0, 5, 0, ref state);
|
---|
357 | while( lbfgs.minlbfgsiteration(ref state) )
|
---|
358 | {
|
---|
359 |
|
---|
360 | //
|
---|
361 | // gradient
|
---|
362 | //
|
---|
363 | for(i=0; i<=wcount-1; i++)
|
---|
364 | {
|
---|
365 | v = 0.0;
|
---|
366 | for(i_=i; i_<=wcount-1;i_++)
|
---|
367 | {
|
---|
368 | v += state.x[i_]*hmod[i,i_];
|
---|
369 | }
|
---|
370 | network.weights[i] = wbase[i]+v;
|
---|
371 | }
|
---|
372 | mlpbase.mlpgradbatch(ref network, ref xy, npoints, ref state.f, ref g);
|
---|
373 | for(i=0; i<=wcount-1; i++)
|
---|
374 | {
|
---|
375 | state.g[i] = 0;
|
---|
376 | }
|
---|
377 | for(i=0; i<=wcount-1; i++)
|
---|
378 | {
|
---|
379 | v = g[i];
|
---|
380 | for(i_=i; i_<=wcount-1;i_++)
|
---|
381 | {
|
---|
382 | state.g[i_] = state.g[i_] + v*hmod[i,i_];
|
---|
383 | }
|
---|
384 | }
|
---|
385 |
|
---|
386 | //
|
---|
387 | // weight decay
|
---|
388 | // grad(x'*x) = A'*(x0+A*t)
|
---|
389 | //
|
---|
390 | v = 0.0;
|
---|
391 | for(i_=0; i_<=wcount-1;i_++)
|
---|
392 | {
|
---|
393 | v += network.weights[i_]*network.weights[i_];
|
---|
394 | }
|
---|
395 | state.f = state.f+0.5*decay*v;
|
---|
396 | for(i=0; i<=wcount-1; i++)
|
---|
397 | {
|
---|
398 | v = decay*network.weights[i];
|
---|
399 | for(i_=i; i_<=wcount-1;i_++)
|
---|
400 | {
|
---|
401 | state.g[i_] = state.g[i_] + v*hmod[i,i_];
|
---|
402 | }
|
---|
403 | }
|
---|
404 |
|
---|
405 | //
|
---|
406 | // next iteration
|
---|
407 | //
|
---|
408 | rep.ngrad = rep.ngrad+1;
|
---|
409 | }
|
---|
410 | lbfgs.minlbfgsresults(ref state, ref wt, ref internalrep);
|
---|
411 |
|
---|
412 | //
|
---|
413 | // Accept new position.
|
---|
414 | // Calculate Hessian
|
---|
415 | //
|
---|
416 | for(i=0; i<=wcount-1; i++)
|
---|
417 | {
|
---|
418 | v = 0.0;
|
---|
419 | for(i_=i; i_<=wcount-1;i_++)
|
---|
420 | {
|
---|
421 | v += wt[i_]*hmod[i,i_];
|
---|
422 | }
|
---|
423 | network.weights[i] = wbase[i]+v;
|
---|
424 | }
|
---|
425 | mlpbase.mlphessianbatch(ref network, ref xy, npoints, ref e, ref g, ref h);
|
---|
426 | v = 0.0;
|
---|
427 | for(i_=0; i_<=wcount-1;i_++)
|
---|
428 | {
|
---|
429 | v += network.weights[i_]*network.weights[i_];
|
---|
430 | }
|
---|
431 | e = e+0.5*decay*v;
|
---|
432 | for(i_=0; i_<=wcount-1;i_++)
|
---|
433 | {
|
---|
434 | g[i_] = g[i_] + decay*network.weights[i_];
|
---|
435 | }
|
---|
436 | for(k=0; k<=wcount-1; k++)
|
---|
437 | {
|
---|
438 | h[k,k] = h[k,k]+decay;
|
---|
439 | }
|
---|
440 | rep.nhess = rep.nhess+1;
|
---|
441 |
|
---|
442 | //
|
---|
443 | // Update lambda
|
---|
444 | //
|
---|
445 | lambda = lambda*lambdadown;
|
---|
446 | nu = 2;
|
---|
447 | }
|
---|
448 |
|
---|
449 | //
|
---|
450 | // update WBest
|
---|
451 | //
|
---|
452 | v = 0.0;
|
---|
453 | for(i_=0; i_<=wcount-1;i_++)
|
---|
454 | {
|
---|
455 | v += network.weights[i_]*network.weights[i_];
|
---|
456 | }
|
---|
457 | e = 0.5*decay*v+mlpbase.mlperror(ref network, ref xy, npoints);
|
---|
458 | if( (double)(e)<(double)(ebest) )
|
---|
459 | {
|
---|
460 | ebest = e;
|
---|
461 | for(i_=0; i_<=wcount-1;i_++)
|
---|
462 | {
|
---|
463 | wbest[i_] = network.weights[i_];
|
---|
464 | }
|
---|
465 | }
|
---|
466 | }
|
---|
467 |
|
---|
468 | //
|
---|
469 | // copy WBest to output
|
---|
470 | //
|
---|
471 | for(i_=0; i_<=wcount-1;i_++)
|
---|
472 | {
|
---|
473 | network.weights[i_] = wbest[i_];
|
---|
474 | }
|
---|
475 | }
|
---|
476 |
|
---|
477 |
|
---|
478 | /*************************************************************************
|
---|
479 | Neural network training using L-BFGS algorithm with regularization.
|
---|
480 | Subroutine trains neural network with restarts from random positions.
|
---|
481 | Algorithm is well suited for problems of any dimensionality (memory
|
---|
482 | requirements and step complexity are linear by weights number).
|
---|
483 |
|
---|
484 | INPUT PARAMETERS:
|
---|
485 | Network - neural network with initialized geometry
|
---|
486 | XY - training set
|
---|
487 | NPoints - training set size
|
---|
488 | Decay - weight decay constant, >=0.001
|
---|
489 | Decay term 'Decay*||Weights||^2' is added to error
|
---|
490 | function.
|
---|
491 | If you don't know what Decay to choose, use 0.001.
|
---|
492 | Restarts - number of restarts from random position, >0.
|
---|
493 | If you don't know what Restarts to choose, use 2.
|
---|
494 | WStep - stopping criterion. Algorithm stops if step size is
|
---|
495 | less than WStep. Recommended value - 0.01. Zero step
|
---|
496 | size means stopping after MaxIts iterations.
|
---|
497 | MaxIts - stopping criterion. Algorithm stops after MaxIts
|
---|
498 | iterations (NOT gradient calculations). Zero MaxIts
|
---|
499 | means stopping when step is sufficiently small.
|
---|
500 |
|
---|
501 | OUTPUT PARAMETERS:
|
---|
502 | Network - trained neural network.
|
---|
503 | Info - return code:
|
---|
504 | * -8, if both WStep=0 and MaxIts=0
|
---|
505 | * -2, if there is a point with class number
|
---|
506 | outside of [0..NOut-1].
|
---|
507 | * -1, if wrong parameters specified
|
---|
508 | (NPoints<0, Restarts<1).
|
---|
509 | * 2, if task has been solved.
|
---|
510 | Rep - training report
|
---|
511 |
|
---|
512 | -- ALGLIB --
|
---|
513 | Copyright 09.12.2007 by Bochkanov Sergey
|
---|
514 | *************************************************************************/
|
---|
515 | public static void mlptrainlbfgs(ref mlpbase.multilayerperceptron network,
|
---|
516 | ref double[,] xy,
|
---|
517 | int npoints,
|
---|
518 | double decay,
|
---|
519 | int restarts,
|
---|
520 | double wstep,
|
---|
521 | int maxits,
|
---|
522 | ref int info,
|
---|
523 | ref mlpreport rep)
|
---|
524 | {
|
---|
525 | int i = 0;
|
---|
526 | int pass = 0;
|
---|
527 | int nin = 0;
|
---|
528 | int nout = 0;
|
---|
529 | int wcount = 0;
|
---|
530 | double[] w = new double[0];
|
---|
531 | double[] wbest = new double[0];
|
---|
532 | double e = 0;
|
---|
533 | double v = 0;
|
---|
534 | double ebest = 0;
|
---|
535 | lbfgs.lbfgsreport internalrep = new lbfgs.lbfgsreport();
|
---|
536 | lbfgs.lbfgsstate state = new lbfgs.lbfgsstate();
|
---|
537 | int i_ = 0;
|
---|
538 |
|
---|
539 |
|
---|
540 | //
|
---|
541 | // Test inputs, parse flags, read network geometry
|
---|
542 | //
|
---|
543 | if( (double)(wstep)==(double)(0) & maxits==0 )
|
---|
544 | {
|
---|
545 | info = -8;
|
---|
546 | return;
|
---|
547 | }
|
---|
548 | if( npoints<=0 | restarts<1 | (double)(wstep)<(double)(0) | maxits<0 )
|
---|
549 | {
|
---|
550 | info = -1;
|
---|
551 | return;
|
---|
552 | }
|
---|
553 | mlpbase.mlpproperties(ref network, ref nin, ref nout, ref wcount);
|
---|
554 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
555 | {
|
---|
556 | for(i=0; i<=npoints-1; i++)
|
---|
557 | {
|
---|
558 | if( (int)Math.Round(xy[i,nin])<0 | (int)Math.Round(xy[i,nin])>=nout )
|
---|
559 | {
|
---|
560 | info = -2;
|
---|
561 | return;
|
---|
562 | }
|
---|
563 | }
|
---|
564 | }
|
---|
565 | decay = Math.Max(decay, mindecay);
|
---|
566 | info = 2;
|
---|
567 |
|
---|
568 | //
|
---|
569 | // Prepare
|
---|
570 | //
|
---|
571 | mlpbase.mlpinitpreprocessor(ref network, ref xy, npoints);
|
---|
572 | w = new double[wcount-1+1];
|
---|
573 | wbest = new double[wcount-1+1];
|
---|
574 | ebest = AP.Math.MaxRealNumber;
|
---|
575 |
|
---|
576 | //
|
---|
577 | // Multiple starts
|
---|
578 | //
|
---|
579 | rep.ncholesky = 0;
|
---|
580 | rep.nhess = 0;
|
---|
581 | rep.ngrad = 0;
|
---|
582 | for(pass=1; pass<=restarts; pass++)
|
---|
583 | {
|
---|
584 |
|
---|
585 | //
|
---|
586 | // Process
|
---|
587 | //
|
---|
588 | mlpbase.mlprandomize(ref network);
|
---|
589 | for(i_=0; i_<=wcount-1;i_++)
|
---|
590 | {
|
---|
591 | w[i_] = network.weights[i_];
|
---|
592 | }
|
---|
593 | lbfgs.minlbfgs(wcount, Math.Min(wcount, 50), ref w, 0.0, 0.0, wstep, maxits, 0, ref state);
|
---|
594 | while( lbfgs.minlbfgsiteration(ref state) )
|
---|
595 | {
|
---|
596 | for(i_=0; i_<=wcount-1;i_++)
|
---|
597 | {
|
---|
598 | network.weights[i_] = state.x[i_];
|
---|
599 | }
|
---|
600 | mlpbase.mlpgradnbatch(ref network, ref xy, npoints, ref state.f, ref state.g);
|
---|
601 | v = 0.0;
|
---|
602 | for(i_=0; i_<=wcount-1;i_++)
|
---|
603 | {
|
---|
604 | v += network.weights[i_]*network.weights[i_];
|
---|
605 | }
|
---|
606 | state.f = state.f+0.5*decay*v;
|
---|
607 | for(i_=0; i_<=wcount-1;i_++)
|
---|
608 | {
|
---|
609 | state.g[i_] = state.g[i_] + decay*network.weights[i_];
|
---|
610 | }
|
---|
611 | rep.ngrad = rep.ngrad+1;
|
---|
612 | }
|
---|
613 | lbfgs.minlbfgsresults(ref state, ref w, ref internalrep);
|
---|
614 | for(i_=0; i_<=wcount-1;i_++)
|
---|
615 | {
|
---|
616 | network.weights[i_] = w[i_];
|
---|
617 | }
|
---|
618 |
|
---|
619 | //
|
---|
620 | // Compare with best
|
---|
621 | //
|
---|
622 | v = 0.0;
|
---|
623 | for(i_=0; i_<=wcount-1;i_++)
|
---|
624 | {
|
---|
625 | v += network.weights[i_]*network.weights[i_];
|
---|
626 | }
|
---|
627 | e = mlpbase.mlperrorn(ref network, ref xy, npoints)+0.5*decay*v;
|
---|
628 | if( (double)(e)<(double)(ebest) )
|
---|
629 | {
|
---|
630 | for(i_=0; i_<=wcount-1;i_++)
|
---|
631 | {
|
---|
632 | wbest[i_] = network.weights[i_];
|
---|
633 | }
|
---|
634 | ebest = e;
|
---|
635 | }
|
---|
636 | }
|
---|
637 |
|
---|
638 | //
|
---|
639 | // The best network
|
---|
640 | //
|
---|
641 | for(i_=0; i_<=wcount-1;i_++)
|
---|
642 | {
|
---|
643 | network.weights[i_] = wbest[i_];
|
---|
644 | }
|
---|
645 | }
|
---|
646 |
|
---|
647 |
|
---|
648 | /*************************************************************************
|
---|
649 | Neural network training using early stopping (base algorithm - L-BFGS with
|
---|
650 | regularization).
|
---|
651 |
|
---|
652 | INPUT PARAMETERS:
|
---|
653 | Network - neural network with initialized geometry
|
---|
654 | TrnXY - training set
|
---|
655 | TrnSize - training set size
|
---|
656 | ValXY - validation set
|
---|
657 | ValSize - validation set size
|
---|
658 | Decay - weight decay constant, >=0.001
|
---|
659 | Decay term 'Decay*||Weights||^2' is added to error
|
---|
660 | function.
|
---|
661 | If you don't know what Decay to choose, use 0.001.
|
---|
662 | Restarts - number of restarts from random position, >0.
|
---|
663 | If you don't know what Restarts to choose, use 2.
|
---|
664 |
|
---|
665 | OUTPUT PARAMETERS:
|
---|
666 | Network - trained neural network.
|
---|
667 | Info - return code:
|
---|
668 | * -2, if there is a point with class number
|
---|
669 | outside of [0..NOut-1].
|
---|
670 | * -1, if wrong parameters specified
|
---|
671 | (NPoints<0, Restarts<1, ...).
|
---|
672 | * 2, task has been solved, stopping criterion met -
|
---|
673 | sufficiently small step size. Not expected (we
|
---|
674 | use EARLY stopping) but possible and not an
|
---|
675 | error.
|
---|
676 | * 6, task has been solved, stopping criterion met -
|
---|
677 | increasing of validation set error.
|
---|
678 | Rep - training report
|
---|
679 |
|
---|
680 | NOTE:
|
---|
681 |
|
---|
682 | Algorithm stops if validation set error increases for a long enough or
|
---|
683 | step size is small enought (there are task where validation set may
|
---|
684 | decrease for eternity). In any case solution returned corresponds to the
|
---|
685 | minimum of validation set error.
|
---|
686 |
|
---|
687 | -- ALGLIB --
|
---|
688 | Copyright 10.03.2009 by Bochkanov Sergey
|
---|
689 | *************************************************************************/
|
---|
690 | public static void mlptraines(ref mlpbase.multilayerperceptron network,
|
---|
691 | ref double[,] trnxy,
|
---|
692 | int trnsize,
|
---|
693 | ref double[,] valxy,
|
---|
694 | int valsize,
|
---|
695 | double decay,
|
---|
696 | int restarts,
|
---|
697 | ref int info,
|
---|
698 | ref mlpreport rep)
|
---|
699 | {
|
---|
700 | int i = 0;
|
---|
701 | int pass = 0;
|
---|
702 | int nin = 0;
|
---|
703 | int nout = 0;
|
---|
704 | int wcount = 0;
|
---|
705 | double[] w = new double[0];
|
---|
706 | double[] wbest = new double[0];
|
---|
707 | double e = 0;
|
---|
708 | double v = 0;
|
---|
709 | double ebest = 0;
|
---|
710 | double[] wfinal = new double[0];
|
---|
711 | double efinal = 0;
|
---|
712 | int itbest = 0;
|
---|
713 | lbfgs.lbfgsreport internalrep = new lbfgs.lbfgsreport();
|
---|
714 | lbfgs.lbfgsstate state = new lbfgs.lbfgsstate();
|
---|
715 | double wstep = 0;
|
---|
716 | int i_ = 0;
|
---|
717 |
|
---|
718 | wstep = 0.001;
|
---|
719 |
|
---|
720 | //
|
---|
721 | // Test inputs, parse flags, read network geometry
|
---|
722 | //
|
---|
723 | if( trnsize<=0 | valsize<=0 | restarts<1 | (double)(decay)<(double)(0) )
|
---|
724 | {
|
---|
725 | info = -1;
|
---|
726 | return;
|
---|
727 | }
|
---|
728 | mlpbase.mlpproperties(ref network, ref nin, ref nout, ref wcount);
|
---|
729 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
730 | {
|
---|
731 | for(i=0; i<=trnsize-1; i++)
|
---|
732 | {
|
---|
733 | if( (int)Math.Round(trnxy[i,nin])<0 | (int)Math.Round(trnxy[i,nin])>=nout )
|
---|
734 | {
|
---|
735 | info = -2;
|
---|
736 | return;
|
---|
737 | }
|
---|
738 | }
|
---|
739 | for(i=0; i<=valsize-1; i++)
|
---|
740 | {
|
---|
741 | if( (int)Math.Round(valxy[i,nin])<0 | (int)Math.Round(valxy[i,nin])>=nout )
|
---|
742 | {
|
---|
743 | info = -2;
|
---|
744 | return;
|
---|
745 | }
|
---|
746 | }
|
---|
747 | }
|
---|
748 | info = 2;
|
---|
749 |
|
---|
750 | //
|
---|
751 | // Prepare
|
---|
752 | //
|
---|
753 | mlpbase.mlpinitpreprocessor(ref network, ref trnxy, trnsize);
|
---|
754 | w = new double[wcount-1+1];
|
---|
755 | wbest = new double[wcount-1+1];
|
---|
756 | wfinal = new double[wcount-1+1];
|
---|
757 | efinal = AP.Math.MaxRealNumber;
|
---|
758 | for(i=0; i<=wcount-1; i++)
|
---|
759 | {
|
---|
760 | wfinal[i] = 0;
|
---|
761 | }
|
---|
762 |
|
---|
763 | //
|
---|
764 | // Multiple starts
|
---|
765 | //
|
---|
766 | rep.ncholesky = 0;
|
---|
767 | rep.nhess = 0;
|
---|
768 | rep.ngrad = 0;
|
---|
769 | for(pass=1; pass<=restarts; pass++)
|
---|
770 | {
|
---|
771 |
|
---|
772 | //
|
---|
773 | // Process
|
---|
774 | //
|
---|
775 | mlpbase.mlprandomize(ref network);
|
---|
776 | ebest = mlpbase.mlperror(ref network, ref valxy, valsize);
|
---|
777 | for(i_=0; i_<=wcount-1;i_++)
|
---|
778 | {
|
---|
779 | wbest[i_] = network.weights[i_];
|
---|
780 | }
|
---|
781 | itbest = 0;
|
---|
782 | for(i_=0; i_<=wcount-1;i_++)
|
---|
783 | {
|
---|
784 | w[i_] = network.weights[i_];
|
---|
785 | }
|
---|
786 | lbfgs.minlbfgs(wcount, Math.Min(wcount, 50), ref w, 0.0, 0.0, wstep, 0, 0, ref state);
|
---|
787 | while( lbfgs.minlbfgsiteration(ref state) )
|
---|
788 | {
|
---|
789 |
|
---|
790 | //
|
---|
791 | // Calculate gradient
|
---|
792 | //
|
---|
793 | for(i_=0; i_<=wcount-1;i_++)
|
---|
794 | {
|
---|
795 | network.weights[i_] = state.x[i_];
|
---|
796 | }
|
---|
797 | mlpbase.mlpgradnbatch(ref network, ref trnxy, trnsize, ref state.f, ref state.g);
|
---|
798 | v = 0.0;
|
---|
799 | for(i_=0; i_<=wcount-1;i_++)
|
---|
800 | {
|
---|
801 | v += network.weights[i_]*network.weights[i_];
|
---|
802 | }
|
---|
803 | state.f = state.f+0.5*decay*v;
|
---|
804 | for(i_=0; i_<=wcount-1;i_++)
|
---|
805 | {
|
---|
806 | state.g[i_] = state.g[i_] + decay*network.weights[i_];
|
---|
807 | }
|
---|
808 | rep.ngrad = rep.ngrad+1;
|
---|
809 |
|
---|
810 | //
|
---|
811 | // Validation set
|
---|
812 | //
|
---|
813 | if( state.xupdated )
|
---|
814 | {
|
---|
815 | for(i_=0; i_<=wcount-1;i_++)
|
---|
816 | {
|
---|
817 | network.weights[i_] = w[i_];
|
---|
818 | }
|
---|
819 | e = mlpbase.mlperror(ref network, ref valxy, valsize);
|
---|
820 | if( (double)(e)<(double)(ebest) )
|
---|
821 | {
|
---|
822 | ebest = e;
|
---|
823 | for(i_=0; i_<=wcount-1;i_++)
|
---|
824 | {
|
---|
825 | wbest[i_] = network.weights[i_];
|
---|
826 | }
|
---|
827 | itbest = internalrep.iterationscount;
|
---|
828 | }
|
---|
829 | if( internalrep.iterationscount>30 & (double)(internalrep.iterationscount)>(double)(1.5*itbest) )
|
---|
830 | {
|
---|
831 | info = 6;
|
---|
832 | break;
|
---|
833 | }
|
---|
834 | }
|
---|
835 | }
|
---|
836 | lbfgs.minlbfgsresults(ref state, ref w, ref internalrep);
|
---|
837 |
|
---|
838 | //
|
---|
839 | // Compare with final answer
|
---|
840 | //
|
---|
841 | if( (double)(ebest)<(double)(efinal) )
|
---|
842 | {
|
---|
843 | for(i_=0; i_<=wcount-1;i_++)
|
---|
844 | {
|
---|
845 | wfinal[i_] = wbest[i_];
|
---|
846 | }
|
---|
847 | efinal = ebest;
|
---|
848 | }
|
---|
849 | }
|
---|
850 |
|
---|
851 | //
|
---|
852 | // The best network
|
---|
853 | //
|
---|
854 | for(i_=0; i_<=wcount-1;i_++)
|
---|
855 | {
|
---|
856 | network.weights[i_] = wfinal[i_];
|
---|
857 | }
|
---|
858 | }
|
---|
859 |
|
---|
860 |
|
---|
861 | /*************************************************************************
|
---|
862 | Cross-validation estimate of generalization error.
|
---|
863 |
|
---|
864 | Base algorithm - L-BFGS.
|
---|
865 |
|
---|
866 | INPUT PARAMETERS:
|
---|
867 | Network - neural network with initialized geometry. Network is
|
---|
868 | not changed during cross-validation - it is used only
|
---|
869 | as a representative of its architecture.
|
---|
870 | XY - training set.
|
---|
871 | SSize - training set size
|
---|
872 | Decay - weight decay, same as in MLPTrainLBFGS
|
---|
873 | Restarts - number of restarts, >0.
|
---|
874 | restarts are counted for each partition separately, so
|
---|
875 | total number of restarts will be Restarts*FoldsCount.
|
---|
876 | WStep - stopping criterion, same as in MLPTrainLBFGS
|
---|
877 | MaxIts - stopping criterion, same as in MLPTrainLBFGS
|
---|
878 | FoldsCount - number of folds in k-fold cross-validation,
|
---|
879 | 2<=FoldsCount<=SSize.
|
---|
880 | recommended value: 10.
|
---|
881 |
|
---|
882 | OUTPUT PARAMETERS:
|
---|
883 | Info - return code, same as in MLPTrainLBFGS
|
---|
884 | Rep - report, same as in MLPTrainLM/MLPTrainLBFGS
|
---|
885 | CVRep - generalization error estimates
|
---|
886 |
|
---|
887 | -- ALGLIB --
|
---|
888 | Copyright 09.12.2007 by Bochkanov Sergey
|
---|
889 | *************************************************************************/
|
---|
890 | public static void mlpkfoldcvlbfgs(ref mlpbase.multilayerperceptron network,
|
---|
891 | ref double[,] xy,
|
---|
892 | int npoints,
|
---|
893 | double decay,
|
---|
894 | int restarts,
|
---|
895 | double wstep,
|
---|
896 | int maxits,
|
---|
897 | int foldscount,
|
---|
898 | ref int info,
|
---|
899 | ref mlpreport rep,
|
---|
900 | ref mlpcvreport cvrep)
|
---|
901 | {
|
---|
902 | mlpkfoldcvgeneral(ref network, ref xy, npoints, decay, restarts, foldscount, false, wstep, maxits, ref info, ref rep, ref cvrep);
|
---|
903 | }
|
---|
904 |
|
---|
905 |
|
---|
906 | /*************************************************************************
|
---|
907 | Cross-validation estimate of generalization error.
|
---|
908 |
|
---|
909 | Base algorithm - Levenberg-Marquardt.
|
---|
910 |
|
---|
911 | INPUT PARAMETERS:
|
---|
912 | Network - neural network with initialized geometry. Network is
|
---|
913 | not changed during cross-validation - it is used only
|
---|
914 | as a representative of its architecture.
|
---|
915 | XY - training set.
|
---|
916 | SSize - training set size
|
---|
917 | Decay - weight decay, same as in MLPTrainLBFGS
|
---|
918 | Restarts - number of restarts, >0.
|
---|
919 | restarts are counted for each partition separately, so
|
---|
920 | total number of restarts will be Restarts*FoldsCount.
|
---|
921 | FoldsCount - number of folds in k-fold cross-validation,
|
---|
922 | 2<=FoldsCount<=SSize.
|
---|
923 | recommended value: 10.
|
---|
924 |
|
---|
925 | OUTPUT PARAMETERS:
|
---|
926 | Info - return code, same as in MLPTrainLBFGS
|
---|
927 | Rep - report, same as in MLPTrainLM/MLPTrainLBFGS
|
---|
928 | CVRep - generalization error estimates
|
---|
929 |
|
---|
930 | -- ALGLIB --
|
---|
931 | Copyright 09.12.2007 by Bochkanov Sergey
|
---|
932 | *************************************************************************/
|
---|
933 | public static void mlpkfoldcvlm(ref mlpbase.multilayerperceptron network,
|
---|
934 | ref double[,] xy,
|
---|
935 | int npoints,
|
---|
936 | double decay,
|
---|
937 | int restarts,
|
---|
938 | int foldscount,
|
---|
939 | ref int info,
|
---|
940 | ref mlpreport rep,
|
---|
941 | ref mlpcvreport cvrep)
|
---|
942 | {
|
---|
943 | mlpkfoldcvgeneral(ref network, ref xy, npoints, decay, restarts, foldscount, true, 0.0, 0, ref info, ref rep, ref cvrep);
|
---|
944 | }
|
---|
945 |
|
---|
946 |
|
---|
947 | /*************************************************************************
|
---|
948 | Internal cross-validation subroutine
|
---|
949 | *************************************************************************/
|
---|
950 | private static void mlpkfoldcvgeneral(ref mlpbase.multilayerperceptron n,
|
---|
951 | ref double[,] xy,
|
---|
952 | int npoints,
|
---|
953 | double decay,
|
---|
954 | int restarts,
|
---|
955 | int foldscount,
|
---|
956 | bool lmalgorithm,
|
---|
957 | double wstep,
|
---|
958 | int maxits,
|
---|
959 | ref int info,
|
---|
960 | ref mlpreport rep,
|
---|
961 | ref mlpcvreport cvrep)
|
---|
962 | {
|
---|
963 | int i = 0;
|
---|
964 | int fold = 0;
|
---|
965 | int j = 0;
|
---|
966 | int k = 0;
|
---|
967 | mlpbase.multilayerperceptron network = new mlpbase.multilayerperceptron();
|
---|
968 | int nin = 0;
|
---|
969 | int nout = 0;
|
---|
970 | int rowlen = 0;
|
---|
971 | int wcount = 0;
|
---|
972 | int nclasses = 0;
|
---|
973 | int tssize = 0;
|
---|
974 | int cvssize = 0;
|
---|
975 | double[,] cvset = new double[0,0];
|
---|
976 | double[,] testset = new double[0,0];
|
---|
977 | int[] folds = new int[0];
|
---|
978 | int relcnt = 0;
|
---|
979 | mlpreport internalrep = new mlpreport();
|
---|
980 | double[] x = new double[0];
|
---|
981 | double[] y = new double[0];
|
---|
982 | int i_ = 0;
|
---|
983 |
|
---|
984 |
|
---|
985 | //
|
---|
986 | // Read network geometry, test parameters
|
---|
987 | //
|
---|
988 | mlpbase.mlpproperties(ref n, ref nin, ref nout, ref wcount);
|
---|
989 | if( mlpbase.mlpissoftmax(ref n) )
|
---|
990 | {
|
---|
991 | nclasses = nout;
|
---|
992 | rowlen = nin+1;
|
---|
993 | }
|
---|
994 | else
|
---|
995 | {
|
---|
996 | nclasses = -nout;
|
---|
997 | rowlen = nin+nout;
|
---|
998 | }
|
---|
999 | if( npoints<=0 | foldscount<2 | foldscount>npoints )
|
---|
1000 | {
|
---|
1001 | info = -1;
|
---|
1002 | return;
|
---|
1003 | }
|
---|
1004 | mlpbase.mlpcopy(ref n, ref network);
|
---|
1005 |
|
---|
1006 | //
|
---|
1007 | // K-fold out cross-validation.
|
---|
1008 | // First, estimate generalization error
|
---|
1009 | //
|
---|
1010 | testset = new double[npoints-1+1, rowlen-1+1];
|
---|
1011 | cvset = new double[npoints-1+1, rowlen-1+1];
|
---|
1012 | x = new double[nin-1+1];
|
---|
1013 | y = new double[nout-1+1];
|
---|
1014 | mlpkfoldsplit(ref xy, npoints, nclasses, foldscount, false, ref folds);
|
---|
1015 | cvrep.relclserror = 0;
|
---|
1016 | cvrep.avgce = 0;
|
---|
1017 | cvrep.rmserror = 0;
|
---|
1018 | cvrep.avgerror = 0;
|
---|
1019 | cvrep.avgrelerror = 0;
|
---|
1020 | rep.ngrad = 0;
|
---|
1021 | rep.nhess = 0;
|
---|
1022 | rep.ncholesky = 0;
|
---|
1023 | relcnt = 0;
|
---|
1024 | for(fold=0; fold<=foldscount-1; fold++)
|
---|
1025 | {
|
---|
1026 |
|
---|
1027 | //
|
---|
1028 | // Separate set
|
---|
1029 | //
|
---|
1030 | tssize = 0;
|
---|
1031 | cvssize = 0;
|
---|
1032 | for(i=0; i<=npoints-1; i++)
|
---|
1033 | {
|
---|
1034 | if( folds[i]==fold )
|
---|
1035 | {
|
---|
1036 | for(i_=0; i_<=rowlen-1;i_++)
|
---|
1037 | {
|
---|
1038 | testset[tssize,i_] = xy[i,i_];
|
---|
1039 | }
|
---|
1040 | tssize = tssize+1;
|
---|
1041 | }
|
---|
1042 | else
|
---|
1043 | {
|
---|
1044 | for(i_=0; i_<=rowlen-1;i_++)
|
---|
1045 | {
|
---|
1046 | cvset[cvssize,i_] = xy[i,i_];
|
---|
1047 | }
|
---|
1048 | cvssize = cvssize+1;
|
---|
1049 | }
|
---|
1050 | }
|
---|
1051 |
|
---|
1052 | //
|
---|
1053 | // Train on CV training set
|
---|
1054 | //
|
---|
1055 | if( lmalgorithm )
|
---|
1056 | {
|
---|
1057 | mlptrainlm(ref network, ref cvset, cvssize, decay, restarts, ref info, ref internalrep);
|
---|
1058 | }
|
---|
1059 | else
|
---|
1060 | {
|
---|
1061 | mlptrainlbfgs(ref network, ref cvset, cvssize, decay, restarts, wstep, maxits, ref info, ref internalrep);
|
---|
1062 | }
|
---|
1063 | if( info<0 )
|
---|
1064 | {
|
---|
1065 | cvrep.relclserror = 0;
|
---|
1066 | cvrep.avgce = 0;
|
---|
1067 | cvrep.rmserror = 0;
|
---|
1068 | cvrep.avgerror = 0;
|
---|
1069 | cvrep.avgrelerror = 0;
|
---|
1070 | return;
|
---|
1071 | }
|
---|
1072 | rep.ngrad = rep.ngrad+internalrep.ngrad;
|
---|
1073 | rep.nhess = rep.nhess+internalrep.nhess;
|
---|
1074 | rep.ncholesky = rep.ncholesky+internalrep.ncholesky;
|
---|
1075 |
|
---|
1076 | //
|
---|
1077 | // Estimate error using CV test set
|
---|
1078 | //
|
---|
1079 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
1080 | {
|
---|
1081 |
|
---|
1082 | //
|
---|
1083 | // classification-only code
|
---|
1084 | //
|
---|
1085 | cvrep.relclserror = cvrep.relclserror+mlpbase.mlpclserror(ref network, ref testset, tssize);
|
---|
1086 | cvrep.avgce = cvrep.avgce+mlpbase.mlperrorn(ref network, ref testset, tssize);
|
---|
1087 | }
|
---|
1088 | for(i=0; i<=tssize-1; i++)
|
---|
1089 | {
|
---|
1090 | for(i_=0; i_<=nin-1;i_++)
|
---|
1091 | {
|
---|
1092 | x[i_] = testset[i,i_];
|
---|
1093 | }
|
---|
1094 | mlpbase.mlpprocess(ref network, ref x, ref y);
|
---|
1095 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
1096 | {
|
---|
1097 |
|
---|
1098 | //
|
---|
1099 | // Classification-specific code
|
---|
1100 | //
|
---|
1101 | k = (int)Math.Round(testset[i,nin]);
|
---|
1102 | for(j=0; j<=nout-1; j++)
|
---|
1103 | {
|
---|
1104 | if( j==k )
|
---|
1105 | {
|
---|
1106 | cvrep.rmserror = cvrep.rmserror+AP.Math.Sqr(y[j]-1);
|
---|
1107 | cvrep.avgerror = cvrep.avgerror+Math.Abs(y[j]-1);
|
---|
1108 | cvrep.avgrelerror = cvrep.avgrelerror+Math.Abs(y[j]-1);
|
---|
1109 | relcnt = relcnt+1;
|
---|
1110 | }
|
---|
1111 | else
|
---|
1112 | {
|
---|
1113 | cvrep.rmserror = cvrep.rmserror+AP.Math.Sqr(y[j]);
|
---|
1114 | cvrep.avgerror = cvrep.avgerror+Math.Abs(y[j]);
|
---|
1115 | }
|
---|
1116 | }
|
---|
1117 | }
|
---|
1118 | else
|
---|
1119 | {
|
---|
1120 |
|
---|
1121 | //
|
---|
1122 | // Regression-specific code
|
---|
1123 | //
|
---|
1124 | for(j=0; j<=nout-1; j++)
|
---|
1125 | {
|
---|
1126 | cvrep.rmserror = cvrep.rmserror+AP.Math.Sqr(y[j]-testset[i,nin+j]);
|
---|
1127 | cvrep.avgerror = cvrep.avgerror+Math.Abs(y[j]-testset[i,nin+j]);
|
---|
1128 | if( (double)(testset[i,nin+j])!=(double)(0) )
|
---|
1129 | {
|
---|
1130 | cvrep.avgrelerror = cvrep.avgrelerror+Math.Abs((y[j]-testset[i,nin+j])/testset[i,nin+j]);
|
---|
1131 | relcnt = relcnt+1;
|
---|
1132 | }
|
---|
1133 | }
|
---|
1134 | }
|
---|
1135 | }
|
---|
1136 | }
|
---|
1137 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
1138 | {
|
---|
1139 | cvrep.relclserror = cvrep.relclserror/npoints;
|
---|
1140 | cvrep.avgce = cvrep.avgce/(Math.Log(2)*npoints);
|
---|
1141 | }
|
---|
1142 | cvrep.rmserror = Math.Sqrt(cvrep.rmserror/(npoints*nout));
|
---|
1143 | cvrep.avgerror = cvrep.avgerror/(npoints*nout);
|
---|
1144 | cvrep.avgrelerror = cvrep.avgrelerror/relcnt;
|
---|
1145 | info = 1;
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 |
|
---|
1149 | /*************************************************************************
|
---|
1150 | Subroutine prepares K-fold split of the training set.
|
---|
1151 |
|
---|
1152 | NOTES:
|
---|
1153 | "NClasses>0" means that we have classification task.
|
---|
1154 | "NClasses<0" means regression task with -NClasses real outputs.
|
---|
1155 | *************************************************************************/
|
---|
1156 | private static void mlpkfoldsplit(ref double[,] xy,
|
---|
1157 | int npoints,
|
---|
1158 | int nclasses,
|
---|
1159 | int foldscount,
|
---|
1160 | bool stratifiedsplits,
|
---|
1161 | ref int[] folds)
|
---|
1162 | {
|
---|
1163 | int i = 0;
|
---|
1164 | int j = 0;
|
---|
1165 | int k = 0;
|
---|
1166 |
|
---|
1167 |
|
---|
1168 | //
|
---|
1169 | // test parameters
|
---|
1170 | //
|
---|
1171 | System.Diagnostics.Debug.Assert(npoints>0, "MLPKFoldSplit: wrong NPoints!");
|
---|
1172 | System.Diagnostics.Debug.Assert(nclasses>1 | nclasses<0, "MLPKFoldSplit: wrong NClasses!");
|
---|
1173 | System.Diagnostics.Debug.Assert(foldscount>=2 & foldscount<=npoints, "MLPKFoldSplit: wrong FoldsCount!");
|
---|
1174 | System.Diagnostics.Debug.Assert(!stratifiedsplits, "MLPKFoldSplit: stratified splits are not supported!");
|
---|
1175 |
|
---|
1176 | //
|
---|
1177 | // Folds
|
---|
1178 | //
|
---|
1179 | folds = new int[npoints-1+1];
|
---|
1180 | for(i=0; i<=npoints-1; i++)
|
---|
1181 | {
|
---|
1182 | folds[i] = i*foldscount/npoints;
|
---|
1183 | }
|
---|
1184 | for(i=0; i<=npoints-2; i++)
|
---|
1185 | {
|
---|
1186 | j = i+AP.Math.RandomInteger(npoints-i);
|
---|
1187 | if( j!=i )
|
---|
1188 | {
|
---|
1189 | k = folds[i];
|
---|
1190 | folds[i] = folds[j];
|
---|
1191 | folds[j] = k;
|
---|
1192 | }
|
---|
1193 | }
|
---|
1194 | }
|
---|
1195 | }
|
---|
1196 | }
|
---|