1 | /*************************************************************************
|
---|
2 | Copyright (c) 2007-2008, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class mlpe
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Neural networks ensemble
|
---|
29 | *************************************************************************/
|
---|
30 | public struct mlpensemble
|
---|
31 | {
|
---|
32 | public int[] structinfo;
|
---|
33 | public int ensemblesize;
|
---|
34 | public int nin;
|
---|
35 | public int nout;
|
---|
36 | public int wcount;
|
---|
37 | public bool issoftmax;
|
---|
38 | public bool postprocessing;
|
---|
39 | public double[] weights;
|
---|
40 | public double[] columnmeans;
|
---|
41 | public double[] columnsigmas;
|
---|
42 | public int serializedlen;
|
---|
43 | public double[] serializedmlp;
|
---|
44 | public double[] tmpweights;
|
---|
45 | public double[] tmpmeans;
|
---|
46 | public double[] tmpsigmas;
|
---|
47 | public double[] neurons;
|
---|
48 | public double[] dfdnet;
|
---|
49 | public double[] y;
|
---|
50 | };
|
---|
51 |
|
---|
52 |
|
---|
53 |
|
---|
54 |
|
---|
55 | public const int mlpntotaloffset = 3;
|
---|
56 | public const int mlpevnum = 9;
|
---|
57 |
|
---|
58 |
|
---|
59 | /*************************************************************************
|
---|
60 | Like MLPCreate0, but for ensembles.
|
---|
61 |
|
---|
62 | -- ALGLIB --
|
---|
63 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
64 | *************************************************************************/
|
---|
65 | public static void mlpecreate0(int nin,
|
---|
66 | int nout,
|
---|
67 | int ensemblesize,
|
---|
68 | ref mlpensemble ensemble)
|
---|
69 | {
|
---|
70 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
71 |
|
---|
72 | mlpbase.mlpcreate0(nin, nout, ref net);
|
---|
73 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
74 | }
|
---|
75 |
|
---|
76 |
|
---|
77 | /*************************************************************************
|
---|
78 | Like MLPCreate1, but for ensembles.
|
---|
79 |
|
---|
80 | -- ALGLIB --
|
---|
81 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
82 | *************************************************************************/
|
---|
83 | public static void mlpecreate1(int nin,
|
---|
84 | int nhid,
|
---|
85 | int nout,
|
---|
86 | int ensemblesize,
|
---|
87 | ref mlpensemble ensemble)
|
---|
88 | {
|
---|
89 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
90 |
|
---|
91 | mlpbase.mlpcreate1(nin, nhid, nout, ref net);
|
---|
92 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
93 | }
|
---|
94 |
|
---|
95 |
|
---|
96 | /*************************************************************************
|
---|
97 | Like MLPCreate2, but for ensembles.
|
---|
98 |
|
---|
99 | -- ALGLIB --
|
---|
100 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
101 | *************************************************************************/
|
---|
102 | public static void mlpecreate2(int nin,
|
---|
103 | int nhid1,
|
---|
104 | int nhid2,
|
---|
105 | int nout,
|
---|
106 | int ensemblesize,
|
---|
107 | ref mlpensemble ensemble)
|
---|
108 | {
|
---|
109 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
110 |
|
---|
111 | mlpbase.mlpcreate2(nin, nhid1, nhid2, nout, ref net);
|
---|
112 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
113 | }
|
---|
114 |
|
---|
115 |
|
---|
116 | /*************************************************************************
|
---|
117 | Like MLPCreateB0, but for ensembles.
|
---|
118 |
|
---|
119 | -- ALGLIB --
|
---|
120 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
121 | *************************************************************************/
|
---|
122 | public static void mlpecreateb0(int nin,
|
---|
123 | int nout,
|
---|
124 | double b,
|
---|
125 | double d,
|
---|
126 | int ensemblesize,
|
---|
127 | ref mlpensemble ensemble)
|
---|
128 | {
|
---|
129 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
130 |
|
---|
131 | mlpbase.mlpcreateb0(nin, nout, b, d, ref net);
|
---|
132 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
133 | }
|
---|
134 |
|
---|
135 |
|
---|
136 | /*************************************************************************
|
---|
137 | Like MLPCreateB1, but for ensembles.
|
---|
138 |
|
---|
139 | -- ALGLIB --
|
---|
140 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
141 | *************************************************************************/
|
---|
142 | public static void mlpecreateb1(int nin,
|
---|
143 | int nhid,
|
---|
144 | int nout,
|
---|
145 | double b,
|
---|
146 | double d,
|
---|
147 | int ensemblesize,
|
---|
148 | ref mlpensemble ensemble)
|
---|
149 | {
|
---|
150 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
151 |
|
---|
152 | mlpbase.mlpcreateb1(nin, nhid, nout, b, d, ref net);
|
---|
153 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
154 | }
|
---|
155 |
|
---|
156 |
|
---|
157 | /*************************************************************************
|
---|
158 | Like MLPCreateB2, but for ensembles.
|
---|
159 |
|
---|
160 | -- ALGLIB --
|
---|
161 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
162 | *************************************************************************/
|
---|
163 | public static void mlpecreateb2(int nin,
|
---|
164 | int nhid1,
|
---|
165 | int nhid2,
|
---|
166 | int nout,
|
---|
167 | double b,
|
---|
168 | double d,
|
---|
169 | int ensemblesize,
|
---|
170 | ref mlpensemble ensemble)
|
---|
171 | {
|
---|
172 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
173 |
|
---|
174 | mlpbase.mlpcreateb2(nin, nhid1, nhid2, nout, b, d, ref net);
|
---|
175 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
176 | }
|
---|
177 |
|
---|
178 |
|
---|
179 | /*************************************************************************
|
---|
180 | Like MLPCreateR0, but for ensembles.
|
---|
181 |
|
---|
182 | -- ALGLIB --
|
---|
183 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
184 | *************************************************************************/
|
---|
185 | public static void mlpecreater0(int nin,
|
---|
186 | int nout,
|
---|
187 | double a,
|
---|
188 | double b,
|
---|
189 | int ensemblesize,
|
---|
190 | ref mlpensemble ensemble)
|
---|
191 | {
|
---|
192 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
193 |
|
---|
194 | mlpbase.mlpcreater0(nin, nout, a, b, ref net);
|
---|
195 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
196 | }
|
---|
197 |
|
---|
198 |
|
---|
199 | /*************************************************************************
|
---|
200 | Like MLPCreateR1, but for ensembles.
|
---|
201 |
|
---|
202 | -- ALGLIB --
|
---|
203 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
204 | *************************************************************************/
|
---|
205 | public static void mlpecreater1(int nin,
|
---|
206 | int nhid,
|
---|
207 | int nout,
|
---|
208 | double a,
|
---|
209 | double b,
|
---|
210 | int ensemblesize,
|
---|
211 | ref mlpensemble ensemble)
|
---|
212 | {
|
---|
213 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
214 |
|
---|
215 | mlpbase.mlpcreater1(nin, nhid, nout, a, b, ref net);
|
---|
216 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
217 | }
|
---|
218 |
|
---|
219 |
|
---|
220 | /*************************************************************************
|
---|
221 | Like MLPCreateR2, but for ensembles.
|
---|
222 |
|
---|
223 | -- ALGLIB --
|
---|
224 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
225 | *************************************************************************/
|
---|
226 | public static void mlpecreater2(int nin,
|
---|
227 | int nhid1,
|
---|
228 | int nhid2,
|
---|
229 | int nout,
|
---|
230 | double a,
|
---|
231 | double b,
|
---|
232 | int ensemblesize,
|
---|
233 | ref mlpensemble ensemble)
|
---|
234 | {
|
---|
235 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
236 |
|
---|
237 | mlpbase.mlpcreater2(nin, nhid1, nhid2, nout, a, b, ref net);
|
---|
238 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
239 | }
|
---|
240 |
|
---|
241 |
|
---|
242 | /*************************************************************************
|
---|
243 | Like MLPCreateC0, but for ensembles.
|
---|
244 |
|
---|
245 | -- ALGLIB --
|
---|
246 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
247 | *************************************************************************/
|
---|
248 | public static void mlpecreatec0(int nin,
|
---|
249 | int nout,
|
---|
250 | int ensemblesize,
|
---|
251 | ref mlpensemble ensemble)
|
---|
252 | {
|
---|
253 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
254 |
|
---|
255 | mlpbase.mlpcreatec0(nin, nout, ref net);
|
---|
256 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
257 | }
|
---|
258 |
|
---|
259 |
|
---|
260 | /*************************************************************************
|
---|
261 | Like MLPCreateC1, but for ensembles.
|
---|
262 |
|
---|
263 | -- ALGLIB --
|
---|
264 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
265 | *************************************************************************/
|
---|
266 | public static void mlpecreatec1(int nin,
|
---|
267 | int nhid,
|
---|
268 | int nout,
|
---|
269 | int ensemblesize,
|
---|
270 | ref mlpensemble ensemble)
|
---|
271 | {
|
---|
272 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
273 |
|
---|
274 | mlpbase.mlpcreatec1(nin, nhid, nout, ref net);
|
---|
275 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
276 | }
|
---|
277 |
|
---|
278 |
|
---|
279 | /*************************************************************************
|
---|
280 | Like MLPCreateC2, but for ensembles.
|
---|
281 |
|
---|
282 | -- ALGLIB --
|
---|
283 | Copyright 18.02.2009 by Bochkanov Sergey
|
---|
284 | *************************************************************************/
|
---|
285 | public static void mlpecreatec2(int nin,
|
---|
286 | int nhid1,
|
---|
287 | int nhid2,
|
---|
288 | int nout,
|
---|
289 | int ensemblesize,
|
---|
290 | ref mlpensemble ensemble)
|
---|
291 | {
|
---|
292 | mlpbase.multilayerperceptron net = new mlpbase.multilayerperceptron();
|
---|
293 |
|
---|
294 | mlpbase.mlpcreatec2(nin, nhid1, nhid2, nout, ref net);
|
---|
295 | mlpecreatefromnetwork(ref net, ensemblesize, ref ensemble);
|
---|
296 | }
|
---|
297 |
|
---|
298 |
|
---|
299 | /*************************************************************************
|
---|
300 | Creates ensemble from network. Only network geometry is copied.
|
---|
301 |
|
---|
302 | -- ALGLIB --
|
---|
303 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
304 | *************************************************************************/
|
---|
305 | public static void mlpecreatefromnetwork(ref mlpbase.multilayerperceptron network,
|
---|
306 | int ensemblesize,
|
---|
307 | ref mlpensemble ensemble)
|
---|
308 | {
|
---|
309 | int i = 0;
|
---|
310 | int ccount = 0;
|
---|
311 | int i_ = 0;
|
---|
312 | int i1_ = 0;
|
---|
313 |
|
---|
314 | System.Diagnostics.Debug.Assert(ensemblesize>0, "MLPECreate: incorrect ensemble size!");
|
---|
315 |
|
---|
316 | //
|
---|
317 | // network properties
|
---|
318 | //
|
---|
319 | mlpbase.mlpproperties(ref network, ref ensemble.nin, ref ensemble.nout, ref ensemble.wcount);
|
---|
320 | if( mlpbase.mlpissoftmax(ref network) )
|
---|
321 | {
|
---|
322 | ccount = ensemble.nin;
|
---|
323 | }
|
---|
324 | else
|
---|
325 | {
|
---|
326 | ccount = ensemble.nin+ensemble.nout;
|
---|
327 | }
|
---|
328 | ensemble.postprocessing = false;
|
---|
329 | ensemble.issoftmax = mlpbase.mlpissoftmax(ref network);
|
---|
330 | ensemble.ensemblesize = ensemblesize;
|
---|
331 |
|
---|
332 | //
|
---|
333 | // structure information
|
---|
334 | //
|
---|
335 | ensemble.structinfo = new int[network.structinfo[0]-1+1];
|
---|
336 | for(i=0; i<=network.structinfo[0]-1; i++)
|
---|
337 | {
|
---|
338 | ensemble.structinfo[i] = network.structinfo[i];
|
---|
339 | }
|
---|
340 |
|
---|
341 | //
|
---|
342 | // weights, means, sigmas
|
---|
343 | //
|
---|
344 | ensemble.weights = new double[ensemblesize*ensemble.wcount-1+1];
|
---|
345 | ensemble.columnmeans = new double[ensemblesize*ccount-1+1];
|
---|
346 | ensemble.columnsigmas = new double[ensemblesize*ccount-1+1];
|
---|
347 | for(i=0; i<=ensemblesize*ensemble.wcount-1; i++)
|
---|
348 | {
|
---|
349 | ensemble.weights[i] = AP.Math.RandomReal()-0.5;
|
---|
350 | }
|
---|
351 | for(i=0; i<=ensemblesize-1; i++)
|
---|
352 | {
|
---|
353 | i1_ = (0) - (i*ccount);
|
---|
354 | for(i_=i*ccount; i_<=(i+1)*ccount-1;i_++)
|
---|
355 | {
|
---|
356 | ensemble.columnmeans[i_] = network.columnmeans[i_+i1_];
|
---|
357 | }
|
---|
358 | i1_ = (0) - (i*ccount);
|
---|
359 | for(i_=i*ccount; i_<=(i+1)*ccount-1;i_++)
|
---|
360 | {
|
---|
361 | ensemble.columnsigmas[i_] = network.columnsigmas[i_+i1_];
|
---|
362 | }
|
---|
363 | }
|
---|
364 |
|
---|
365 | //
|
---|
366 | // serialized part
|
---|
367 | //
|
---|
368 | mlpbase.mlpserialize(ref network, ref ensemble.serializedmlp, ref ensemble.serializedlen);
|
---|
369 |
|
---|
370 | //
|
---|
371 | // temporaries, internal buffers
|
---|
372 | //
|
---|
373 | ensemble.tmpweights = new double[ensemble.wcount-1+1];
|
---|
374 | ensemble.tmpmeans = new double[ccount-1+1];
|
---|
375 | ensemble.tmpsigmas = new double[ccount-1+1];
|
---|
376 | ensemble.neurons = new double[ensemble.structinfo[mlpntotaloffset]-1+1];
|
---|
377 | ensemble.dfdnet = new double[ensemble.structinfo[mlpntotaloffset]-1+1];
|
---|
378 | ensemble.y = new double[ensemble.nout-1+1];
|
---|
379 | }
|
---|
380 |
|
---|
381 |
|
---|
382 | /*************************************************************************
|
---|
383 | Copying of MLPEnsemble strucure
|
---|
384 |
|
---|
385 | INPUT PARAMETERS:
|
---|
386 | Ensemble1 - original
|
---|
387 |
|
---|
388 | OUTPUT PARAMETERS:
|
---|
389 | Ensemble2 - copy
|
---|
390 |
|
---|
391 | -- ALGLIB --
|
---|
392 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
393 | *************************************************************************/
|
---|
394 | public static void mlpecopy(ref mlpensemble ensemble1,
|
---|
395 | ref mlpensemble ensemble2)
|
---|
396 | {
|
---|
397 | int i = 0;
|
---|
398 | int ssize = 0;
|
---|
399 | int ccount = 0;
|
---|
400 | int ntotal = 0;
|
---|
401 | int i_ = 0;
|
---|
402 |
|
---|
403 |
|
---|
404 | //
|
---|
405 | // Unload info
|
---|
406 | //
|
---|
407 | ssize = ensemble1.structinfo[0];
|
---|
408 | if( ensemble1.issoftmax )
|
---|
409 | {
|
---|
410 | ccount = ensemble1.nin;
|
---|
411 | }
|
---|
412 | else
|
---|
413 | {
|
---|
414 | ccount = ensemble1.nin+ensemble1.nout;
|
---|
415 | }
|
---|
416 | ntotal = ensemble1.structinfo[mlpntotaloffset];
|
---|
417 |
|
---|
418 | //
|
---|
419 | // Allocate space
|
---|
420 | //
|
---|
421 | ensemble2.structinfo = new int[ssize-1+1];
|
---|
422 | ensemble2.weights = new double[ensemble1.ensemblesize*ensemble1.wcount-1+1];
|
---|
423 | ensemble2.columnmeans = new double[ensemble1.ensemblesize*ccount-1+1];
|
---|
424 | ensemble2.columnsigmas = new double[ensemble1.ensemblesize*ccount-1+1];
|
---|
425 | ensemble2.tmpweights = new double[ensemble1.wcount-1+1];
|
---|
426 | ensemble2.tmpmeans = new double[ccount-1+1];
|
---|
427 | ensemble2.tmpsigmas = new double[ccount-1+1];
|
---|
428 | ensemble2.serializedmlp = new double[ensemble1.serializedlen-1+1];
|
---|
429 | ensemble2.neurons = new double[ntotal-1+1];
|
---|
430 | ensemble2.dfdnet = new double[ntotal-1+1];
|
---|
431 | ensemble2.y = new double[ensemble1.nout-1+1];
|
---|
432 |
|
---|
433 | //
|
---|
434 | // Copy
|
---|
435 | //
|
---|
436 | ensemble2.nin = ensemble1.nin;
|
---|
437 | ensemble2.nout = ensemble1.nout;
|
---|
438 | ensemble2.wcount = ensemble1.wcount;
|
---|
439 | ensemble2.ensemblesize = ensemble1.ensemblesize;
|
---|
440 | ensemble2.issoftmax = ensemble1.issoftmax;
|
---|
441 | ensemble2.postprocessing = ensemble1.postprocessing;
|
---|
442 | ensemble2.serializedlen = ensemble1.serializedlen;
|
---|
443 | for(i=0; i<=ssize-1; i++)
|
---|
444 | {
|
---|
445 | ensemble2.structinfo[i] = ensemble1.structinfo[i];
|
---|
446 | }
|
---|
447 | for(i_=0; i_<=ensemble1.ensemblesize*ensemble1.wcount-1;i_++)
|
---|
448 | {
|
---|
449 | ensemble2.weights[i_] = ensemble1.weights[i_];
|
---|
450 | }
|
---|
451 | for(i_=0; i_<=ensemble1.ensemblesize*ccount-1;i_++)
|
---|
452 | {
|
---|
453 | ensemble2.columnmeans[i_] = ensemble1.columnmeans[i_];
|
---|
454 | }
|
---|
455 | for(i_=0; i_<=ensemble1.ensemblesize*ccount-1;i_++)
|
---|
456 | {
|
---|
457 | ensemble2.columnsigmas[i_] = ensemble1.columnsigmas[i_];
|
---|
458 | }
|
---|
459 | for(i_=0; i_<=ensemble1.serializedlen-1;i_++)
|
---|
460 | {
|
---|
461 | ensemble2.serializedmlp[i_] = ensemble1.serializedmlp[i_];
|
---|
462 | }
|
---|
463 | }
|
---|
464 |
|
---|
465 |
|
---|
466 | /*************************************************************************
|
---|
467 | Serialization of MLPEnsemble strucure
|
---|
468 |
|
---|
469 | INPUT PARAMETERS:
|
---|
470 | Ensemble- original
|
---|
471 |
|
---|
472 | OUTPUT PARAMETERS:
|
---|
473 | RA - array of real numbers which stores ensemble,
|
---|
474 | array[0..RLen-1]
|
---|
475 | RLen - RA lenght
|
---|
476 |
|
---|
477 | -- ALGLIB --
|
---|
478 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
479 | *************************************************************************/
|
---|
480 | public static void mlpeserialize(ref mlpensemble ensemble,
|
---|
481 | ref double[] ra,
|
---|
482 | ref int rlen)
|
---|
483 | {
|
---|
484 | int i = 0;
|
---|
485 | int ssize = 0;
|
---|
486 | int ntotal = 0;
|
---|
487 | int ccount = 0;
|
---|
488 | int hsize = 0;
|
---|
489 | int offs = 0;
|
---|
490 | int i_ = 0;
|
---|
491 | int i1_ = 0;
|
---|
492 |
|
---|
493 | hsize = 13;
|
---|
494 | ssize = ensemble.structinfo[0];
|
---|
495 | if( ensemble.issoftmax )
|
---|
496 | {
|
---|
497 | ccount = ensemble.nin;
|
---|
498 | }
|
---|
499 | else
|
---|
500 | {
|
---|
501 | ccount = ensemble.nin+ensemble.nout;
|
---|
502 | }
|
---|
503 | ntotal = ensemble.structinfo[mlpntotaloffset];
|
---|
504 | rlen = hsize+ssize+ensemble.ensemblesize*ensemble.wcount+2*ccount*ensemble.ensemblesize+ensemble.serializedlen;
|
---|
505 |
|
---|
506 | //
|
---|
507 | // RA format:
|
---|
508 | // [0] RLen
|
---|
509 | // [1] Version (MLPEVNum)
|
---|
510 | // [2] EnsembleSize
|
---|
511 | // [3] NIn
|
---|
512 | // [4] NOut
|
---|
513 | // [5] WCount
|
---|
514 | // [6] IsSoftmax 0/1
|
---|
515 | // [7] PostProcessing 0/1
|
---|
516 | // [8] sizeof(StructInfo)
|
---|
517 | // [9] NTotal (sizeof(Neurons), sizeof(DFDNET))
|
---|
518 | // [10] CCount (sizeof(ColumnMeans), sizeof(ColumnSigmas))
|
---|
519 | // [11] data offset
|
---|
520 | // [12] SerializedLen
|
---|
521 | //
|
---|
522 | // [..] StructInfo
|
---|
523 | // [..] Weights
|
---|
524 | // [..] ColumnMeans
|
---|
525 | // [..] ColumnSigmas
|
---|
526 | //
|
---|
527 | ra = new double[rlen-1+1];
|
---|
528 | ra[0] = rlen;
|
---|
529 | ra[1] = mlpevnum;
|
---|
530 | ra[2] = ensemble.ensemblesize;
|
---|
531 | ra[3] = ensemble.nin;
|
---|
532 | ra[4] = ensemble.nout;
|
---|
533 | ra[5] = ensemble.wcount;
|
---|
534 | if( ensemble.issoftmax )
|
---|
535 | {
|
---|
536 | ra[6] = 1;
|
---|
537 | }
|
---|
538 | else
|
---|
539 | {
|
---|
540 | ra[6] = 0;
|
---|
541 | }
|
---|
542 | if( ensemble.postprocessing )
|
---|
543 | {
|
---|
544 | ra[7] = 1;
|
---|
545 | }
|
---|
546 | else
|
---|
547 | {
|
---|
548 | ra[7] = 9;
|
---|
549 | }
|
---|
550 | ra[8] = ssize;
|
---|
551 | ra[9] = ntotal;
|
---|
552 | ra[10] = ccount;
|
---|
553 | ra[11] = hsize;
|
---|
554 | ra[12] = ensemble.serializedlen;
|
---|
555 | offs = hsize;
|
---|
556 | for(i=offs; i<=offs+ssize-1; i++)
|
---|
557 | {
|
---|
558 | ra[i] = ensemble.structinfo[i-offs];
|
---|
559 | }
|
---|
560 | offs = offs+ssize;
|
---|
561 | i1_ = (0) - (offs);
|
---|
562 | for(i_=offs; i_<=offs+ensemble.ensemblesize*ensemble.wcount-1;i_++)
|
---|
563 | {
|
---|
564 | ra[i_] = ensemble.weights[i_+i1_];
|
---|
565 | }
|
---|
566 | offs = offs+ensemble.ensemblesize*ensemble.wcount;
|
---|
567 | i1_ = (0) - (offs);
|
---|
568 | for(i_=offs; i_<=offs+ensemble.ensemblesize*ccount-1;i_++)
|
---|
569 | {
|
---|
570 | ra[i_] = ensemble.columnmeans[i_+i1_];
|
---|
571 | }
|
---|
572 | offs = offs+ensemble.ensemblesize*ccount;
|
---|
573 | i1_ = (0) - (offs);
|
---|
574 | for(i_=offs; i_<=offs+ensemble.ensemblesize*ccount-1;i_++)
|
---|
575 | {
|
---|
576 | ra[i_] = ensemble.columnsigmas[i_+i1_];
|
---|
577 | }
|
---|
578 | offs = offs+ensemble.ensemblesize*ccount;
|
---|
579 | i1_ = (0) - (offs);
|
---|
580 | for(i_=offs; i_<=offs+ensemble.serializedlen-1;i_++)
|
---|
581 | {
|
---|
582 | ra[i_] = ensemble.serializedmlp[i_+i1_];
|
---|
583 | }
|
---|
584 | offs = offs+ensemble.serializedlen;
|
---|
585 | }
|
---|
586 |
|
---|
587 |
|
---|
588 | /*************************************************************************
|
---|
589 | Unserialization of MLPEnsemble strucure
|
---|
590 |
|
---|
591 | INPUT PARAMETERS:
|
---|
592 | RA - real array which stores ensemble
|
---|
593 |
|
---|
594 | OUTPUT PARAMETERS:
|
---|
595 | Ensemble- restored structure
|
---|
596 |
|
---|
597 | -- ALGLIB --
|
---|
598 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
599 | *************************************************************************/
|
---|
600 | public static void mlpeunserialize(ref double[] ra,
|
---|
601 | ref mlpensemble ensemble)
|
---|
602 | {
|
---|
603 | int i = 0;
|
---|
604 | int ssize = 0;
|
---|
605 | int ntotal = 0;
|
---|
606 | int ccount = 0;
|
---|
607 | int hsize = 0;
|
---|
608 | int offs = 0;
|
---|
609 | int i_ = 0;
|
---|
610 | int i1_ = 0;
|
---|
611 |
|
---|
612 | System.Diagnostics.Debug.Assert((int)Math.Round(ra[1])==mlpevnum, "MLPEUnserialize: incorrect array!");
|
---|
613 |
|
---|
614 | //
|
---|
615 | // load info
|
---|
616 | //
|
---|
617 | hsize = 13;
|
---|
618 | ensemble.ensemblesize = (int)Math.Round(ra[2]);
|
---|
619 | ensemble.nin = (int)Math.Round(ra[3]);
|
---|
620 | ensemble.nout = (int)Math.Round(ra[4]);
|
---|
621 | ensemble.wcount = (int)Math.Round(ra[5]);
|
---|
622 | ensemble.issoftmax = (int)Math.Round(ra[6])==1;
|
---|
623 | ensemble.postprocessing = (int)Math.Round(ra[7])==1;
|
---|
624 | ssize = (int)Math.Round(ra[8]);
|
---|
625 | ntotal = (int)Math.Round(ra[9]);
|
---|
626 | ccount = (int)Math.Round(ra[10]);
|
---|
627 | offs = (int)Math.Round(ra[11]);
|
---|
628 | ensemble.serializedlen = (int)Math.Round(ra[12]);
|
---|
629 |
|
---|
630 | //
|
---|
631 | // Allocate arrays
|
---|
632 | //
|
---|
633 | ensemble.structinfo = new int[ssize-1+1];
|
---|
634 | ensemble.weights = new double[ensemble.ensemblesize*ensemble.wcount-1+1];
|
---|
635 | ensemble.columnmeans = new double[ensemble.ensemblesize*ccount-1+1];
|
---|
636 | ensemble.columnsigmas = new double[ensemble.ensemblesize*ccount-1+1];
|
---|
637 | ensemble.tmpweights = new double[ensemble.wcount-1+1];
|
---|
638 | ensemble.tmpmeans = new double[ccount-1+1];
|
---|
639 | ensemble.tmpsigmas = new double[ccount-1+1];
|
---|
640 | ensemble.neurons = new double[ntotal-1+1];
|
---|
641 | ensemble.dfdnet = new double[ntotal-1+1];
|
---|
642 | ensemble.serializedmlp = new double[ensemble.serializedlen-1+1];
|
---|
643 | ensemble.y = new double[ensemble.nout-1+1];
|
---|
644 |
|
---|
645 | //
|
---|
646 | // load data
|
---|
647 | //
|
---|
648 | for(i=offs; i<=offs+ssize-1; i++)
|
---|
649 | {
|
---|
650 | ensemble.structinfo[i-offs] = (int)Math.Round(ra[i]);
|
---|
651 | }
|
---|
652 | offs = offs+ssize;
|
---|
653 | i1_ = (offs) - (0);
|
---|
654 | for(i_=0; i_<=ensemble.ensemblesize*ensemble.wcount-1;i_++)
|
---|
655 | {
|
---|
656 | ensemble.weights[i_] = ra[i_+i1_];
|
---|
657 | }
|
---|
658 | offs = offs+ensemble.ensemblesize*ensemble.wcount;
|
---|
659 | i1_ = (offs) - (0);
|
---|
660 | for(i_=0; i_<=ensemble.ensemblesize*ccount-1;i_++)
|
---|
661 | {
|
---|
662 | ensemble.columnmeans[i_] = ra[i_+i1_];
|
---|
663 | }
|
---|
664 | offs = offs+ensemble.ensemblesize*ccount;
|
---|
665 | i1_ = (offs) - (0);
|
---|
666 | for(i_=0; i_<=ensemble.ensemblesize*ccount-1;i_++)
|
---|
667 | {
|
---|
668 | ensemble.columnsigmas[i_] = ra[i_+i1_];
|
---|
669 | }
|
---|
670 | offs = offs+ensemble.ensemblesize*ccount;
|
---|
671 | i1_ = (offs) - (0);
|
---|
672 | for(i_=0; i_<=ensemble.serializedlen-1;i_++)
|
---|
673 | {
|
---|
674 | ensemble.serializedmlp[i_] = ra[i_+i1_];
|
---|
675 | }
|
---|
676 | offs = offs+ensemble.serializedlen;
|
---|
677 | }
|
---|
678 |
|
---|
679 |
|
---|
680 | /*************************************************************************
|
---|
681 | Randomization of MLP ensemble
|
---|
682 |
|
---|
683 | -- ALGLIB --
|
---|
684 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
685 | *************************************************************************/
|
---|
686 | public static void mlperandomize(ref mlpensemble ensemble)
|
---|
687 | {
|
---|
688 | int i = 0;
|
---|
689 |
|
---|
690 | for(i=0; i<=ensemble.ensemblesize*ensemble.wcount-1; i++)
|
---|
691 | {
|
---|
692 | ensemble.weights[i] = AP.Math.RandomReal()-0.5;
|
---|
693 | }
|
---|
694 | }
|
---|
695 |
|
---|
696 |
|
---|
697 | /*************************************************************************
|
---|
698 | Return ensemble properties (number of inputs and outputs).
|
---|
699 |
|
---|
700 | -- ALGLIB --
|
---|
701 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
702 | *************************************************************************/
|
---|
703 | public static void mlpeproperties(ref mlpensemble ensemble,
|
---|
704 | ref int nin,
|
---|
705 | ref int nout)
|
---|
706 | {
|
---|
707 | nin = ensemble.nin;
|
---|
708 | nout = ensemble.nout;
|
---|
709 | }
|
---|
710 |
|
---|
711 |
|
---|
712 | /*************************************************************************
|
---|
713 | Return normalization type (whether ensemble is SOFTMAX-normalized or not).
|
---|
714 |
|
---|
715 | -- ALGLIB --
|
---|
716 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
717 | *************************************************************************/
|
---|
718 | public static bool mlpeissoftmax(ref mlpensemble ensemble)
|
---|
719 | {
|
---|
720 | bool result = new bool();
|
---|
721 |
|
---|
722 | result = ensemble.issoftmax;
|
---|
723 | return result;
|
---|
724 | }
|
---|
725 |
|
---|
726 |
|
---|
727 | /*************************************************************************
|
---|
728 | Procesing
|
---|
729 |
|
---|
730 | INPUT PARAMETERS:
|
---|
731 | Ensemble- neural networks ensemble
|
---|
732 | X - input vector, array[0..NIn-1].
|
---|
733 |
|
---|
734 | OUTPUT PARAMETERS:
|
---|
735 | Y - result. Regression estimate when solving regression task,
|
---|
736 | vector of posterior probabilities for classification task.
|
---|
737 | Subroutine does not allocate memory for this vector, it is
|
---|
738 | responsibility of a caller to allocate it. Array must be
|
---|
739 | at least [0..NOut-1].
|
---|
740 |
|
---|
741 | -- ALGLIB --
|
---|
742 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
743 | *************************************************************************/
|
---|
744 | public static void mlpeprocess(ref mlpensemble ensemble,
|
---|
745 | ref double[] x,
|
---|
746 | ref double[] y)
|
---|
747 | {
|
---|
748 | int i = 0;
|
---|
749 | int es = 0;
|
---|
750 | int wc = 0;
|
---|
751 | int cc = 0;
|
---|
752 | double v = 0;
|
---|
753 | int i_ = 0;
|
---|
754 | int i1_ = 0;
|
---|
755 |
|
---|
756 | es = ensemble.ensemblesize;
|
---|
757 | wc = ensemble.wcount;
|
---|
758 | if( ensemble.issoftmax )
|
---|
759 | {
|
---|
760 | cc = ensemble.nin;
|
---|
761 | }
|
---|
762 | else
|
---|
763 | {
|
---|
764 | cc = ensemble.nin+ensemble.nout;
|
---|
765 | }
|
---|
766 | v = (double)(1)/(double)(es);
|
---|
767 | for(i=0; i<=ensemble.nout-1; i++)
|
---|
768 | {
|
---|
769 | y[i] = 0;
|
---|
770 | }
|
---|
771 | for(i=0; i<=es-1; i++)
|
---|
772 | {
|
---|
773 | i1_ = (i*wc) - (0);
|
---|
774 | for(i_=0; i_<=wc-1;i_++)
|
---|
775 | {
|
---|
776 | ensemble.tmpweights[i_] = ensemble.weights[i_+i1_];
|
---|
777 | }
|
---|
778 | i1_ = (i*cc) - (0);
|
---|
779 | for(i_=0; i_<=cc-1;i_++)
|
---|
780 | {
|
---|
781 | ensemble.tmpmeans[i_] = ensemble.columnmeans[i_+i1_];
|
---|
782 | }
|
---|
783 | i1_ = (i*cc) - (0);
|
---|
784 | for(i_=0; i_<=cc-1;i_++)
|
---|
785 | {
|
---|
786 | ensemble.tmpsigmas[i_] = ensemble.columnsigmas[i_+i1_];
|
---|
787 | }
|
---|
788 | mlpbase.mlpinternalprocessvector(ref ensemble.structinfo, ref ensemble.tmpweights, ref ensemble.tmpmeans, ref ensemble.tmpsigmas, ref ensemble.neurons, ref ensemble.dfdnet, ref x, ref ensemble.y);
|
---|
789 | for(i_=0; i_<=ensemble.nout-1;i_++)
|
---|
790 | {
|
---|
791 | y[i_] = y[i_] + v*ensemble.y[i_];
|
---|
792 | }
|
---|
793 | }
|
---|
794 | }
|
---|
795 |
|
---|
796 |
|
---|
797 | /*************************************************************************
|
---|
798 | Relative classification error on the test set
|
---|
799 |
|
---|
800 | INPUT PARAMETERS:
|
---|
801 | Ensemble- ensemble
|
---|
802 | XY - test set
|
---|
803 | NPoints - test set size
|
---|
804 |
|
---|
805 | RESULT:
|
---|
806 | percent of incorrectly classified cases.
|
---|
807 | Works both for classifier betwork and for regression networks which
|
---|
808 | are used as classifiers.
|
---|
809 |
|
---|
810 | -- ALGLIB --
|
---|
811 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
812 | *************************************************************************/
|
---|
813 | public static double mlperelclserror(ref mlpensemble ensemble,
|
---|
814 | ref double[,] xy,
|
---|
815 | int npoints)
|
---|
816 | {
|
---|
817 | double result = 0;
|
---|
818 | double relcls = 0;
|
---|
819 | double avgce = 0;
|
---|
820 | double rms = 0;
|
---|
821 | double avg = 0;
|
---|
822 | double avgrel = 0;
|
---|
823 |
|
---|
824 | mlpeallerrors(ref ensemble, ref xy, npoints, ref relcls, ref avgce, ref rms, ref avg, ref avgrel);
|
---|
825 | result = relcls;
|
---|
826 | return result;
|
---|
827 | }
|
---|
828 |
|
---|
829 |
|
---|
830 | /*************************************************************************
|
---|
831 | Average cross-entropy (in bits per element) on the test set
|
---|
832 |
|
---|
833 | INPUT PARAMETERS:
|
---|
834 | Ensemble- ensemble
|
---|
835 | XY - test set
|
---|
836 | NPoints - test set size
|
---|
837 |
|
---|
838 | RESULT:
|
---|
839 | CrossEntropy/(NPoints*LN(2)).
|
---|
840 | Zero if ensemble solves regression task.
|
---|
841 |
|
---|
842 | -- ALGLIB --
|
---|
843 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
844 | *************************************************************************/
|
---|
845 | public static double mlpeavgce(ref mlpensemble ensemble,
|
---|
846 | ref double[,] xy,
|
---|
847 | int npoints)
|
---|
848 | {
|
---|
849 | double result = 0;
|
---|
850 | double relcls = 0;
|
---|
851 | double avgce = 0;
|
---|
852 | double rms = 0;
|
---|
853 | double avg = 0;
|
---|
854 | double avgrel = 0;
|
---|
855 |
|
---|
856 | mlpeallerrors(ref ensemble, ref xy, npoints, ref relcls, ref avgce, ref rms, ref avg, ref avgrel);
|
---|
857 | result = avgce;
|
---|
858 | return result;
|
---|
859 | }
|
---|
860 |
|
---|
861 |
|
---|
862 | /*************************************************************************
|
---|
863 | RMS error on the test set
|
---|
864 |
|
---|
865 | INPUT PARAMETERS:
|
---|
866 | Ensemble- ensemble
|
---|
867 | XY - test set
|
---|
868 | NPoints - test set size
|
---|
869 |
|
---|
870 | RESULT:
|
---|
871 | root mean square error.
|
---|
872 | Its meaning for regression task is obvious. As for classification task
|
---|
873 | RMS error means error when estimating posterior probabilities.
|
---|
874 |
|
---|
875 | -- ALGLIB --
|
---|
876 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
877 | *************************************************************************/
|
---|
878 | public static double mlpermserror(ref mlpensemble ensemble,
|
---|
879 | ref double[,] xy,
|
---|
880 | int npoints)
|
---|
881 | {
|
---|
882 | double result = 0;
|
---|
883 | double relcls = 0;
|
---|
884 | double avgce = 0;
|
---|
885 | double rms = 0;
|
---|
886 | double avg = 0;
|
---|
887 | double avgrel = 0;
|
---|
888 |
|
---|
889 | mlpeallerrors(ref ensemble, ref xy, npoints, ref relcls, ref avgce, ref rms, ref avg, ref avgrel);
|
---|
890 | result = rms;
|
---|
891 | return result;
|
---|
892 | }
|
---|
893 |
|
---|
894 |
|
---|
895 | /*************************************************************************
|
---|
896 | Average error on the test set
|
---|
897 |
|
---|
898 | INPUT PARAMETERS:
|
---|
899 | Ensemble- ensemble
|
---|
900 | XY - test set
|
---|
901 | NPoints - test set size
|
---|
902 |
|
---|
903 | RESULT:
|
---|
904 | Its meaning for regression task is obvious. As for classification task
|
---|
905 | it means average error when estimating posterior probabilities.
|
---|
906 |
|
---|
907 | -- ALGLIB --
|
---|
908 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
909 | *************************************************************************/
|
---|
910 | public static double mlpeavgerror(ref mlpensemble ensemble,
|
---|
911 | ref double[,] xy,
|
---|
912 | int npoints)
|
---|
913 | {
|
---|
914 | double result = 0;
|
---|
915 | double relcls = 0;
|
---|
916 | double avgce = 0;
|
---|
917 | double rms = 0;
|
---|
918 | double avg = 0;
|
---|
919 | double avgrel = 0;
|
---|
920 |
|
---|
921 | mlpeallerrors(ref ensemble, ref xy, npoints, ref relcls, ref avgce, ref rms, ref avg, ref avgrel);
|
---|
922 | result = avg;
|
---|
923 | return result;
|
---|
924 | }
|
---|
925 |
|
---|
926 |
|
---|
927 | /*************************************************************************
|
---|
928 | Average relative error on the test set
|
---|
929 |
|
---|
930 | INPUT PARAMETERS:
|
---|
931 | Ensemble- ensemble
|
---|
932 | XY - test set
|
---|
933 | NPoints - test set size
|
---|
934 |
|
---|
935 | RESULT:
|
---|
936 | Its meaning for regression task is obvious. As for classification task
|
---|
937 | it means average relative error when estimating posterior probabilities.
|
---|
938 |
|
---|
939 | -- ALGLIB --
|
---|
940 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
941 | *************************************************************************/
|
---|
942 | public static double mlpeavgrelerror(ref mlpensemble ensemble,
|
---|
943 | ref double[,] xy,
|
---|
944 | int npoints)
|
---|
945 | {
|
---|
946 | double result = 0;
|
---|
947 | double relcls = 0;
|
---|
948 | double avgce = 0;
|
---|
949 | double rms = 0;
|
---|
950 | double avg = 0;
|
---|
951 | double avgrel = 0;
|
---|
952 |
|
---|
953 | mlpeallerrors(ref ensemble, ref xy, npoints, ref relcls, ref avgce, ref rms, ref avg, ref avgrel);
|
---|
954 | result = avgrel;
|
---|
955 | return result;
|
---|
956 | }
|
---|
957 |
|
---|
958 |
|
---|
959 | /*************************************************************************
|
---|
960 | Training neural networks ensemble using bootstrap aggregating (bagging).
|
---|
961 | Modified Levenberg-Marquardt algorithm is used as base training method.
|
---|
962 |
|
---|
963 | INPUT PARAMETERS:
|
---|
964 | Ensemble - model with initialized geometry
|
---|
965 | XY - training set
|
---|
966 | NPoints - training set size
|
---|
967 | Decay - weight decay coefficient, >=0.001
|
---|
968 | Restarts - restarts, >0.
|
---|
969 |
|
---|
970 | OUTPUT PARAMETERS:
|
---|
971 | Ensemble - trained model
|
---|
972 | Info - return code:
|
---|
973 | * -2, if there is a point with class number
|
---|
974 | outside of [0..NClasses-1].
|
---|
975 | * -1, if incorrect parameters was passed
|
---|
976 | (NPoints<0, Restarts<1).
|
---|
977 | * 2, if task has been solved.
|
---|
978 | Rep - training report.
|
---|
979 | OOBErrors - out-of-bag generalization error estimate
|
---|
980 |
|
---|
981 | -- ALGLIB --
|
---|
982 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
983 | *************************************************************************/
|
---|
984 | public static void mlpebagginglm(ref mlpensemble ensemble,
|
---|
985 | ref double[,] xy,
|
---|
986 | int npoints,
|
---|
987 | double decay,
|
---|
988 | int restarts,
|
---|
989 | ref int info,
|
---|
990 | ref mlptrain.mlpreport rep,
|
---|
991 | ref mlptrain.mlpcvreport ooberrors)
|
---|
992 | {
|
---|
993 | mlpebagginginternal(ref ensemble, ref xy, npoints, decay, restarts, 0.0, 0, true, ref info, ref rep, ref ooberrors);
|
---|
994 | }
|
---|
995 |
|
---|
996 |
|
---|
997 | /*************************************************************************
|
---|
998 | Training neural networks ensemble using bootstrap aggregating (bagging).
|
---|
999 | L-BFGS algorithm is used as base training method.
|
---|
1000 |
|
---|
1001 | INPUT PARAMETERS:
|
---|
1002 | Ensemble - model with initialized geometry
|
---|
1003 | XY - training set
|
---|
1004 | NPoints - training set size
|
---|
1005 | Decay - weight decay coefficient, >=0.001
|
---|
1006 | Restarts - restarts, >0.
|
---|
1007 | WStep - stopping criterion, same as in MLPTrainLBFGS
|
---|
1008 | MaxIts - stopping criterion, same as in MLPTrainLBFGS
|
---|
1009 |
|
---|
1010 | OUTPUT PARAMETERS:
|
---|
1011 | Ensemble - trained model
|
---|
1012 | Info - return code:
|
---|
1013 | * -8, if both WStep=0 and MaxIts=0
|
---|
1014 | * -2, if there is a point with class number
|
---|
1015 | outside of [0..NClasses-1].
|
---|
1016 | * -1, if incorrect parameters was passed
|
---|
1017 | (NPoints<0, Restarts<1).
|
---|
1018 | * 2, if task has been solved.
|
---|
1019 | Rep - training report.
|
---|
1020 | OOBErrors - out-of-bag generalization error estimate
|
---|
1021 |
|
---|
1022 | -- ALGLIB --
|
---|
1023 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
1024 | *************************************************************************/
|
---|
1025 | public static void mlpebagginglbfgs(ref mlpensemble ensemble,
|
---|
1026 | ref double[,] xy,
|
---|
1027 | int npoints,
|
---|
1028 | double decay,
|
---|
1029 | int restarts,
|
---|
1030 | double wstep,
|
---|
1031 | int maxits,
|
---|
1032 | ref int info,
|
---|
1033 | ref mlptrain.mlpreport rep,
|
---|
1034 | ref mlptrain.mlpcvreport ooberrors)
|
---|
1035 | {
|
---|
1036 | mlpebagginginternal(ref ensemble, ref xy, npoints, decay, restarts, wstep, maxits, false, ref info, ref rep, ref ooberrors);
|
---|
1037 | }
|
---|
1038 |
|
---|
1039 |
|
---|
1040 | /*************************************************************************
|
---|
1041 | Training neural networks ensemble using early stopping.
|
---|
1042 |
|
---|
1043 | INPUT PARAMETERS:
|
---|
1044 | Ensemble - model with initialized geometry
|
---|
1045 | XY - training set
|
---|
1046 | NPoints - training set size
|
---|
1047 | Decay - weight decay coefficient, >=0.001
|
---|
1048 | Restarts - restarts, >0.
|
---|
1049 |
|
---|
1050 | OUTPUT PARAMETERS:
|
---|
1051 | Ensemble - trained model
|
---|
1052 | Info - return code:
|
---|
1053 | * -2, if there is a point with class number
|
---|
1054 | outside of [0..NClasses-1].
|
---|
1055 | * -1, if incorrect parameters was passed
|
---|
1056 | (NPoints<0, Restarts<1).
|
---|
1057 | * 6, if task has been solved.
|
---|
1058 | Rep - training report.
|
---|
1059 | OOBErrors - out-of-bag generalization error estimate
|
---|
1060 |
|
---|
1061 | -- ALGLIB --
|
---|
1062 | Copyright 10.03.2009 by Bochkanov Sergey
|
---|
1063 | *************************************************************************/
|
---|
1064 | public static void mlpetraines(ref mlpensemble ensemble,
|
---|
1065 | ref double[,] xy,
|
---|
1066 | int npoints,
|
---|
1067 | double decay,
|
---|
1068 | int restarts,
|
---|
1069 | ref int info,
|
---|
1070 | ref mlptrain.mlpreport rep)
|
---|
1071 | {
|
---|
1072 | int i = 0;
|
---|
1073 | int k = 0;
|
---|
1074 | int ccount = 0;
|
---|
1075 | int pcount = 0;
|
---|
1076 | double[,] trnxy = new double[0,0];
|
---|
1077 | double[,] valxy = new double[0,0];
|
---|
1078 | int trnsize = 0;
|
---|
1079 | int valsize = 0;
|
---|
1080 | mlpbase.multilayerperceptron network = new mlpbase.multilayerperceptron();
|
---|
1081 | int tmpinfo = 0;
|
---|
1082 | mlptrain.mlpreport tmprep = new mlptrain.mlpreport();
|
---|
1083 | int i_ = 0;
|
---|
1084 | int i1_ = 0;
|
---|
1085 |
|
---|
1086 | if( npoints<2 | restarts<1 | (double)(decay)<(double)(0) )
|
---|
1087 | {
|
---|
1088 | info = -1;
|
---|
1089 | return;
|
---|
1090 | }
|
---|
1091 | if( ensemble.issoftmax )
|
---|
1092 | {
|
---|
1093 | for(i=0; i<=npoints-1; i++)
|
---|
1094 | {
|
---|
1095 | if( (int)Math.Round(xy[i,ensemble.nin])<0 | (int)Math.Round(xy[i,ensemble.nin])>=ensemble.nout )
|
---|
1096 | {
|
---|
1097 | info = -2;
|
---|
1098 | return;
|
---|
1099 | }
|
---|
1100 | }
|
---|
1101 | }
|
---|
1102 | info = 6;
|
---|
1103 |
|
---|
1104 | //
|
---|
1105 | // allocate
|
---|
1106 | //
|
---|
1107 | if( ensemble.issoftmax )
|
---|
1108 | {
|
---|
1109 | ccount = ensemble.nin+1;
|
---|
1110 | pcount = ensemble.nin;
|
---|
1111 | }
|
---|
1112 | else
|
---|
1113 | {
|
---|
1114 | ccount = ensemble.nin+ensemble.nout;
|
---|
1115 | pcount = ensemble.nin+ensemble.nout;
|
---|
1116 | }
|
---|
1117 | trnxy = new double[npoints-1+1, ccount-1+1];
|
---|
1118 | valxy = new double[npoints-1+1, ccount-1+1];
|
---|
1119 | mlpbase.mlpunserialize(ref ensemble.serializedmlp, ref network);
|
---|
1120 | rep.ngrad = 0;
|
---|
1121 | rep.nhess = 0;
|
---|
1122 | rep.ncholesky = 0;
|
---|
1123 |
|
---|
1124 | //
|
---|
1125 | // train networks
|
---|
1126 | //
|
---|
1127 | for(k=0; k<=ensemble.ensemblesize-1; k++)
|
---|
1128 | {
|
---|
1129 |
|
---|
1130 | //
|
---|
1131 | // Split set
|
---|
1132 | //
|
---|
1133 | do
|
---|
1134 | {
|
---|
1135 | trnsize = 0;
|
---|
1136 | valsize = 0;
|
---|
1137 | for(i=0; i<=npoints-1; i++)
|
---|
1138 | {
|
---|
1139 | if( (double)(AP.Math.RandomReal())<(double)(0.66) )
|
---|
1140 | {
|
---|
1141 |
|
---|
1142 | //
|
---|
1143 | // Assign sample to training set
|
---|
1144 | //
|
---|
1145 | for(i_=0; i_<=ccount-1;i_++)
|
---|
1146 | {
|
---|
1147 | trnxy[trnsize,i_] = xy[i,i_];
|
---|
1148 | }
|
---|
1149 | trnsize = trnsize+1;
|
---|
1150 | }
|
---|
1151 | else
|
---|
1152 | {
|
---|
1153 |
|
---|
1154 | //
|
---|
1155 | // Assign sample to validation set
|
---|
1156 | //
|
---|
1157 | for(i_=0; i_<=ccount-1;i_++)
|
---|
1158 | {
|
---|
1159 | valxy[valsize,i_] = xy[i,i_];
|
---|
1160 | }
|
---|
1161 | valsize = valsize+1;
|
---|
1162 | }
|
---|
1163 | }
|
---|
1164 | }
|
---|
1165 | while( ! (trnsize!=0 & valsize!=0) );
|
---|
1166 |
|
---|
1167 | //
|
---|
1168 | // Train
|
---|
1169 | //
|
---|
1170 | mlptrain.mlptraines(ref network, ref trnxy, trnsize, ref valxy, valsize, decay, restarts, ref tmpinfo, ref tmprep);
|
---|
1171 | if( tmpinfo<0 )
|
---|
1172 | {
|
---|
1173 | info = tmpinfo;
|
---|
1174 | return;
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | //
|
---|
1178 | // save results
|
---|
1179 | //
|
---|
1180 | i1_ = (0) - (k*ensemble.wcount);
|
---|
1181 | for(i_=k*ensemble.wcount; i_<=(k+1)*ensemble.wcount-1;i_++)
|
---|
1182 | {
|
---|
1183 | ensemble.weights[i_] = network.weights[i_+i1_];
|
---|
1184 | }
|
---|
1185 | i1_ = (0) - (k*pcount);
|
---|
1186 | for(i_=k*pcount; i_<=(k+1)*pcount-1;i_++)
|
---|
1187 | {
|
---|
1188 | ensemble.columnmeans[i_] = network.columnmeans[i_+i1_];
|
---|
1189 | }
|
---|
1190 | i1_ = (0) - (k*pcount);
|
---|
1191 | for(i_=k*pcount; i_<=(k+1)*pcount-1;i_++)
|
---|
1192 | {
|
---|
1193 | ensemble.columnsigmas[i_] = network.columnsigmas[i_+i1_];
|
---|
1194 | }
|
---|
1195 | rep.ngrad = rep.ngrad+tmprep.ngrad;
|
---|
1196 | rep.nhess = rep.nhess+tmprep.nhess;
|
---|
1197 | rep.ncholesky = rep.ncholesky+tmprep.ncholesky;
|
---|
1198 | }
|
---|
1199 | }
|
---|
1200 |
|
---|
1201 |
|
---|
1202 | /*************************************************************************
|
---|
1203 | Calculation of all types of errors
|
---|
1204 |
|
---|
1205 | -- ALGLIB --
|
---|
1206 | Copyright 17.02.2009 by Bochkanov Sergey
|
---|
1207 | *************************************************************************/
|
---|
1208 | private static void mlpeallerrors(ref mlpensemble ensemble,
|
---|
1209 | ref double[,] xy,
|
---|
1210 | int npoints,
|
---|
1211 | ref double relcls,
|
---|
1212 | ref double avgce,
|
---|
1213 | ref double rms,
|
---|
1214 | ref double avg,
|
---|
1215 | ref double avgrel)
|
---|
1216 | {
|
---|
1217 | int i = 0;
|
---|
1218 | double[] buf = new double[0];
|
---|
1219 | double[] workx = new double[0];
|
---|
1220 | double[] y = new double[0];
|
---|
1221 | double[] dy = new double[0];
|
---|
1222 | int i_ = 0;
|
---|
1223 | int i1_ = 0;
|
---|
1224 |
|
---|
1225 | workx = new double[ensemble.nin-1+1];
|
---|
1226 | y = new double[ensemble.nout-1+1];
|
---|
1227 | if( ensemble.issoftmax )
|
---|
1228 | {
|
---|
1229 | dy = new double[0+1];
|
---|
1230 | bdss.dserrallocate(ensemble.nout, ref buf);
|
---|
1231 | }
|
---|
1232 | else
|
---|
1233 | {
|
---|
1234 | dy = new double[ensemble.nout-1+1];
|
---|
1235 | bdss.dserrallocate(-ensemble.nout, ref buf);
|
---|
1236 | }
|
---|
1237 | for(i=0; i<=npoints-1; i++)
|
---|
1238 | {
|
---|
1239 | for(i_=0; i_<=ensemble.nin-1;i_++)
|
---|
1240 | {
|
---|
1241 | workx[i_] = xy[i,i_];
|
---|
1242 | }
|
---|
1243 | mlpeprocess(ref ensemble, ref workx, ref y);
|
---|
1244 | if( ensemble.issoftmax )
|
---|
1245 | {
|
---|
1246 | dy[0] = xy[i,ensemble.nin];
|
---|
1247 | }
|
---|
1248 | else
|
---|
1249 | {
|
---|
1250 | i1_ = (ensemble.nin) - (0);
|
---|
1251 | for(i_=0; i_<=ensemble.nout-1;i_++)
|
---|
1252 | {
|
---|
1253 | dy[i_] = xy[i,i_+i1_];
|
---|
1254 | }
|
---|
1255 | }
|
---|
1256 | bdss.dserraccumulate(ref buf, ref y, ref dy);
|
---|
1257 | }
|
---|
1258 | bdss.dserrfinish(ref buf);
|
---|
1259 | relcls = buf[0];
|
---|
1260 | avgce = buf[1];
|
---|
1261 | rms = buf[2];
|
---|
1262 | avg = buf[3];
|
---|
1263 | avgrel = buf[4];
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 |
|
---|
1267 | /*************************************************************************
|
---|
1268 | Internal bagging subroutine.
|
---|
1269 |
|
---|
1270 | -- ALGLIB --
|
---|
1271 | Copyright 19.02.2009 by Bochkanov Sergey
|
---|
1272 | *************************************************************************/
|
---|
1273 | private static void mlpebagginginternal(ref mlpensemble ensemble,
|
---|
1274 | ref double[,] xy,
|
---|
1275 | int npoints,
|
---|
1276 | double decay,
|
---|
1277 | int restarts,
|
---|
1278 | double wstep,
|
---|
1279 | int maxits,
|
---|
1280 | bool lmalgorithm,
|
---|
1281 | ref int info,
|
---|
1282 | ref mlptrain.mlpreport rep,
|
---|
1283 | ref mlptrain.mlpcvreport ooberrors)
|
---|
1284 | {
|
---|
1285 | double[,] xys = new double[0,0];
|
---|
1286 | bool[] s = new bool[0];
|
---|
1287 | double[,] oobbuf = new double[0,0];
|
---|
1288 | int[] oobcntbuf = new int[0];
|
---|
1289 | double[] x = new double[0];
|
---|
1290 | double[] y = new double[0];
|
---|
1291 | double[] dy = new double[0];
|
---|
1292 | double[] dsbuf = new double[0];
|
---|
1293 | int nin = 0;
|
---|
1294 | int nout = 0;
|
---|
1295 | int ccnt = 0;
|
---|
1296 | int pcnt = 0;
|
---|
1297 | int i = 0;
|
---|
1298 | int j = 0;
|
---|
1299 | int k = 0;
|
---|
1300 | double v = 0;
|
---|
1301 | mlptrain.mlpreport tmprep = new mlptrain.mlpreport();
|
---|
1302 | mlpbase.multilayerperceptron network = new mlpbase.multilayerperceptron();
|
---|
1303 | int i_ = 0;
|
---|
1304 | int i1_ = 0;
|
---|
1305 |
|
---|
1306 |
|
---|
1307 | //
|
---|
1308 | // Test for inputs
|
---|
1309 | //
|
---|
1310 | if( !lmalgorithm & (double)(wstep)==(double)(0) & maxits==0 )
|
---|
1311 | {
|
---|
1312 | info = -8;
|
---|
1313 | return;
|
---|
1314 | }
|
---|
1315 | if( npoints<=0 | restarts<1 | (double)(wstep)<(double)(0) | maxits<0 )
|
---|
1316 | {
|
---|
1317 | info = -1;
|
---|
1318 | return;
|
---|
1319 | }
|
---|
1320 | if( ensemble.issoftmax )
|
---|
1321 | {
|
---|
1322 | for(i=0; i<=npoints-1; i++)
|
---|
1323 | {
|
---|
1324 | if( (int)Math.Round(xy[i,ensemble.nin])<0 | (int)Math.Round(xy[i,ensemble.nin])>=ensemble.nout )
|
---|
1325 | {
|
---|
1326 | info = -2;
|
---|
1327 | return;
|
---|
1328 | }
|
---|
1329 | }
|
---|
1330 | }
|
---|
1331 |
|
---|
1332 | //
|
---|
1333 | // allocate temporaries
|
---|
1334 | //
|
---|
1335 | info = 2;
|
---|
1336 | rep.ngrad = 0;
|
---|
1337 | rep.nhess = 0;
|
---|
1338 | rep.ncholesky = 0;
|
---|
1339 | ooberrors.relclserror = 0;
|
---|
1340 | ooberrors.avgce = 0;
|
---|
1341 | ooberrors.rmserror = 0;
|
---|
1342 | ooberrors.avgerror = 0;
|
---|
1343 | ooberrors.avgrelerror = 0;
|
---|
1344 | nin = ensemble.nin;
|
---|
1345 | nout = ensemble.nout;
|
---|
1346 | if( ensemble.issoftmax )
|
---|
1347 | {
|
---|
1348 | ccnt = nin+1;
|
---|
1349 | pcnt = nin;
|
---|
1350 | }
|
---|
1351 | else
|
---|
1352 | {
|
---|
1353 | ccnt = nin+nout;
|
---|
1354 | pcnt = nin+nout;
|
---|
1355 | }
|
---|
1356 | xys = new double[npoints-1+1, ccnt-1+1];
|
---|
1357 | s = new bool[npoints-1+1];
|
---|
1358 | oobbuf = new double[npoints-1+1, nout-1+1];
|
---|
1359 | oobcntbuf = new int[npoints-1+1];
|
---|
1360 | x = new double[nin-1+1];
|
---|
1361 | y = new double[nout-1+1];
|
---|
1362 | if( ensemble.issoftmax )
|
---|
1363 | {
|
---|
1364 | dy = new double[0+1];
|
---|
1365 | }
|
---|
1366 | else
|
---|
1367 | {
|
---|
1368 | dy = new double[nout-1+1];
|
---|
1369 | }
|
---|
1370 | for(i=0; i<=npoints-1; i++)
|
---|
1371 | {
|
---|
1372 | for(j=0; j<=nout-1; j++)
|
---|
1373 | {
|
---|
1374 | oobbuf[i,j] = 0;
|
---|
1375 | }
|
---|
1376 | }
|
---|
1377 | for(i=0; i<=npoints-1; i++)
|
---|
1378 | {
|
---|
1379 | oobcntbuf[i] = 0;
|
---|
1380 | }
|
---|
1381 | mlpbase.mlpunserialize(ref ensemble.serializedmlp, ref network);
|
---|
1382 |
|
---|
1383 | //
|
---|
1384 | // main bagging cycle
|
---|
1385 | //
|
---|
1386 | for(k=0; k<=ensemble.ensemblesize-1; k++)
|
---|
1387 | {
|
---|
1388 |
|
---|
1389 | //
|
---|
1390 | // prepare dataset
|
---|
1391 | //
|
---|
1392 | for(i=0; i<=npoints-1; i++)
|
---|
1393 | {
|
---|
1394 | s[i] = false;
|
---|
1395 | }
|
---|
1396 | for(i=0; i<=npoints-1; i++)
|
---|
1397 | {
|
---|
1398 | j = AP.Math.RandomInteger(npoints);
|
---|
1399 | s[j] = true;
|
---|
1400 | for(i_=0; i_<=ccnt-1;i_++)
|
---|
1401 | {
|
---|
1402 | xys[i,i_] = xy[j,i_];
|
---|
1403 | }
|
---|
1404 | }
|
---|
1405 |
|
---|
1406 | //
|
---|
1407 | // train
|
---|
1408 | //
|
---|
1409 | if( lmalgorithm )
|
---|
1410 | {
|
---|
1411 | mlptrain.mlptrainlm(ref network, ref xys, npoints, decay, restarts, ref info, ref tmprep);
|
---|
1412 | }
|
---|
1413 | else
|
---|
1414 | {
|
---|
1415 | mlptrain.mlptrainlbfgs(ref network, ref xys, npoints, decay, restarts, wstep, maxits, ref info, ref tmprep);
|
---|
1416 | }
|
---|
1417 | if( info<0 )
|
---|
1418 | {
|
---|
1419 | return;
|
---|
1420 | }
|
---|
1421 |
|
---|
1422 | //
|
---|
1423 | // save results
|
---|
1424 | //
|
---|
1425 | rep.ngrad = rep.ngrad+tmprep.ngrad;
|
---|
1426 | rep.nhess = rep.nhess+tmprep.nhess;
|
---|
1427 | rep.ncholesky = rep.ncholesky+tmprep.ncholesky;
|
---|
1428 | i1_ = (0) - (k*ensemble.wcount);
|
---|
1429 | for(i_=k*ensemble.wcount; i_<=(k+1)*ensemble.wcount-1;i_++)
|
---|
1430 | {
|
---|
1431 | ensemble.weights[i_] = network.weights[i_+i1_];
|
---|
1432 | }
|
---|
1433 | i1_ = (0) - (k*pcnt);
|
---|
1434 | for(i_=k*pcnt; i_<=(k+1)*pcnt-1;i_++)
|
---|
1435 | {
|
---|
1436 | ensemble.columnmeans[i_] = network.columnmeans[i_+i1_];
|
---|
1437 | }
|
---|
1438 | i1_ = (0) - (k*pcnt);
|
---|
1439 | for(i_=k*pcnt; i_<=(k+1)*pcnt-1;i_++)
|
---|
1440 | {
|
---|
1441 | ensemble.columnsigmas[i_] = network.columnsigmas[i_+i1_];
|
---|
1442 | }
|
---|
1443 |
|
---|
1444 | //
|
---|
1445 | // OOB estimates
|
---|
1446 | //
|
---|
1447 | for(i=0; i<=npoints-1; i++)
|
---|
1448 | {
|
---|
1449 | if( !s[i] )
|
---|
1450 | {
|
---|
1451 | for(i_=0; i_<=nin-1;i_++)
|
---|
1452 | {
|
---|
1453 | x[i_] = xy[i,i_];
|
---|
1454 | }
|
---|
1455 | mlpbase.mlpprocess(ref network, ref x, ref y);
|
---|
1456 | for(i_=0; i_<=nout-1;i_++)
|
---|
1457 | {
|
---|
1458 | oobbuf[i,i_] = oobbuf[i,i_] + y[i_];
|
---|
1459 | }
|
---|
1460 | oobcntbuf[i] = oobcntbuf[i]+1;
|
---|
1461 | }
|
---|
1462 | }
|
---|
1463 | }
|
---|
1464 |
|
---|
1465 | //
|
---|
1466 | // OOB estimates
|
---|
1467 | //
|
---|
1468 | if( ensemble.issoftmax )
|
---|
1469 | {
|
---|
1470 | bdss.dserrallocate(nout, ref dsbuf);
|
---|
1471 | }
|
---|
1472 | else
|
---|
1473 | {
|
---|
1474 | bdss.dserrallocate(-nout, ref dsbuf);
|
---|
1475 | }
|
---|
1476 | for(i=0; i<=npoints-1; i++)
|
---|
1477 | {
|
---|
1478 | if( oobcntbuf[i]!=0 )
|
---|
1479 | {
|
---|
1480 | v = (double)(1)/(double)(oobcntbuf[i]);
|
---|
1481 | for(i_=0; i_<=nout-1;i_++)
|
---|
1482 | {
|
---|
1483 | y[i_] = v*oobbuf[i,i_];
|
---|
1484 | }
|
---|
1485 | if( ensemble.issoftmax )
|
---|
1486 | {
|
---|
1487 | dy[0] = xy[i,nin];
|
---|
1488 | }
|
---|
1489 | else
|
---|
1490 | {
|
---|
1491 | i1_ = (nin) - (0);
|
---|
1492 | for(i_=0; i_<=nout-1;i_++)
|
---|
1493 | {
|
---|
1494 | dy[i_] = v*xy[i,i_+i1_];
|
---|
1495 | }
|
---|
1496 | }
|
---|
1497 | bdss.dserraccumulate(ref dsbuf, ref y, ref dy);
|
---|
1498 | }
|
---|
1499 | }
|
---|
1500 | bdss.dserrfinish(ref dsbuf);
|
---|
1501 | ooberrors.relclserror = dsbuf[0];
|
---|
1502 | ooberrors.avgce = dsbuf[1];
|
---|
1503 | ooberrors.rmserror = dsbuf[2];
|
---|
1504 | ooberrors.avgerror = dsbuf[3];
|
---|
1505 | ooberrors.avgrelerror = dsbuf[4];
|
---|
1506 | }
|
---|
1507 | }
|
---|
1508 | }
|
---|