1 | /*************************************************************************
|
---|
2 | This file is a part of ALGLIB project.
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class trlinsolve
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Utility subroutine performing the "safe" solution of system of linear
|
---|
29 | equations with triangular coefficient matrices.
|
---|
30 |
|
---|
31 | The subroutine uses scaling and solves the scaled system A*x=s*b (where s
|
---|
32 | is a scalar value) instead of A*x=b, choosing s so that x can be
|
---|
33 | represented by a floating-point number. The closer the system gets to a
|
---|
34 | singular, the less s is. If the system is singular, s=0 and x contains the
|
---|
35 | non-trivial solution of equation A*x=0.
|
---|
36 |
|
---|
37 | The feature of an algorithm is that it could not cause an overflow or a
|
---|
38 | division by zero regardless of the matrix used as the input.
|
---|
39 |
|
---|
40 | The algorithm can solve systems of equations with upper/lower triangular
|
---|
41 | matrices, with/without unit diagonal, and systems of type A*x=b or A'*x=b
|
---|
42 | (where A' is a transposed matrix A).
|
---|
43 |
|
---|
44 | Input parameters:
|
---|
45 | A - system matrix. Array whose indexes range within [0..N-1, 0..N-1].
|
---|
46 | N - size of matrix A.
|
---|
47 | X - right-hand member of a system.
|
---|
48 | Array whose index ranges within [0..N-1].
|
---|
49 | IsUpper - matrix type. If it is True, the system matrix is the upper
|
---|
50 | triangular and is located in the corresponding part of
|
---|
51 | matrix A.
|
---|
52 | Trans - problem type. If it is True, the problem to be solved is
|
---|
53 | A'*x=b, otherwise it is A*x=b.
|
---|
54 | Isunit - matrix type. If it is True, the system matrix has a unit
|
---|
55 | diagonal (the elements on the main diagonal are not used
|
---|
56 | in the calculation process), otherwise the matrix is considered
|
---|
57 | to be a general triangular matrix.
|
---|
58 |
|
---|
59 | Output parameters:
|
---|
60 | X - solution. Array whose index ranges within [0..N-1].
|
---|
61 | S - scaling factor.
|
---|
62 |
|
---|
63 | -- LAPACK auxiliary routine (version 3.0) --
|
---|
64 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
65 | Courant Institute, Argonne National Lab, and Rice University
|
---|
66 | June 30, 1992
|
---|
67 | *************************************************************************/
|
---|
68 | public static void rmatrixtrsafesolve(ref double[,] a,
|
---|
69 | int n,
|
---|
70 | ref double[] x,
|
---|
71 | ref double s,
|
---|
72 | bool isupper,
|
---|
73 | bool istrans,
|
---|
74 | bool isunit)
|
---|
75 | {
|
---|
76 | bool normin = new bool();
|
---|
77 | double[] cnorm = new double[0];
|
---|
78 | double[,] a1 = new double[0,0];
|
---|
79 | double[] x1 = new double[0];
|
---|
80 | int i = 0;
|
---|
81 | int i_ = 0;
|
---|
82 | int i1_ = 0;
|
---|
83 |
|
---|
84 |
|
---|
85 | //
|
---|
86 | // From 0-based to 1-based
|
---|
87 | //
|
---|
88 | normin = false;
|
---|
89 | a1 = new double[n+1, n+1];
|
---|
90 | x1 = new double[n+1];
|
---|
91 | for(i=1; i<=n; i++)
|
---|
92 | {
|
---|
93 | i1_ = (0) - (1);
|
---|
94 | for(i_=1; i_<=n;i_++)
|
---|
95 | {
|
---|
96 | a1[i,i_] = a[i-1,i_+i1_];
|
---|
97 | }
|
---|
98 | }
|
---|
99 | i1_ = (0) - (1);
|
---|
100 | for(i_=1; i_<=n;i_++)
|
---|
101 | {
|
---|
102 | x1[i_] = x[i_+i1_];
|
---|
103 | }
|
---|
104 |
|
---|
105 | //
|
---|
106 | // Solve 1-based
|
---|
107 | //
|
---|
108 | safesolvetriangular(ref a1, n, ref x1, ref s, isupper, istrans, isunit, normin, ref cnorm);
|
---|
109 |
|
---|
110 | //
|
---|
111 | // From 1-based to 0-based
|
---|
112 | //
|
---|
113 | i1_ = (1) - (0);
|
---|
114 | for(i_=0; i_<=n-1;i_++)
|
---|
115 | {
|
---|
116 | x[i_] = x1[i_+i1_];
|
---|
117 | }
|
---|
118 | }
|
---|
119 |
|
---|
120 |
|
---|
121 | /*************************************************************************
|
---|
122 | Obsolete 1-based subroutine.
|
---|
123 | See RMatrixTRSafeSolve for 0-based replacement.
|
---|
124 | *************************************************************************/
|
---|
125 | public static void safesolvetriangular(ref double[,] a,
|
---|
126 | int n,
|
---|
127 | ref double[] x,
|
---|
128 | ref double s,
|
---|
129 | bool isupper,
|
---|
130 | bool istrans,
|
---|
131 | bool isunit,
|
---|
132 | bool normin,
|
---|
133 | ref double[] cnorm)
|
---|
134 | {
|
---|
135 | int i = 0;
|
---|
136 | int imax = 0;
|
---|
137 | int j = 0;
|
---|
138 | int jfirst = 0;
|
---|
139 | int jinc = 0;
|
---|
140 | int jlast = 0;
|
---|
141 | int jm1 = 0;
|
---|
142 | int jp1 = 0;
|
---|
143 | int ip1 = 0;
|
---|
144 | int im1 = 0;
|
---|
145 | int k = 0;
|
---|
146 | int flg = 0;
|
---|
147 | double v = 0;
|
---|
148 | double vd = 0;
|
---|
149 | double bignum = 0;
|
---|
150 | double grow = 0;
|
---|
151 | double rec = 0;
|
---|
152 | double smlnum = 0;
|
---|
153 | double sumj = 0;
|
---|
154 | double tjj = 0;
|
---|
155 | double tjjs = 0;
|
---|
156 | double tmax = 0;
|
---|
157 | double tscal = 0;
|
---|
158 | double uscal = 0;
|
---|
159 | double xbnd = 0;
|
---|
160 | double xj = 0;
|
---|
161 | double xmax = 0;
|
---|
162 | bool notran = new bool();
|
---|
163 | bool upper = new bool();
|
---|
164 | bool nounit = new bool();
|
---|
165 | int i_ = 0;
|
---|
166 |
|
---|
167 | upper = isupper;
|
---|
168 | notran = !istrans;
|
---|
169 | nounit = !isunit;
|
---|
170 |
|
---|
171 | //
|
---|
172 | // Quick return if possible
|
---|
173 | //
|
---|
174 | if( n==0 )
|
---|
175 | {
|
---|
176 | return;
|
---|
177 | }
|
---|
178 |
|
---|
179 | //
|
---|
180 | // Determine machine dependent parameters to control overflow.
|
---|
181 | //
|
---|
182 | smlnum = AP.Math.MinRealNumber/(AP.Math.MachineEpsilon*2);
|
---|
183 | bignum = 1/smlnum;
|
---|
184 | s = 1;
|
---|
185 | if( !normin )
|
---|
186 | {
|
---|
187 | cnorm = new double[n+1];
|
---|
188 |
|
---|
189 | //
|
---|
190 | // Compute the 1-norm of each column, not including the diagonal.
|
---|
191 | //
|
---|
192 | if( upper )
|
---|
193 | {
|
---|
194 |
|
---|
195 | //
|
---|
196 | // A is upper triangular.
|
---|
197 | //
|
---|
198 | for(j=1; j<=n; j++)
|
---|
199 | {
|
---|
200 | v = 0;
|
---|
201 | for(k=1; k<=j-1; k++)
|
---|
202 | {
|
---|
203 | v = v+Math.Abs(a[k,j]);
|
---|
204 | }
|
---|
205 | cnorm[j] = v;
|
---|
206 | }
|
---|
207 | }
|
---|
208 | else
|
---|
209 | {
|
---|
210 |
|
---|
211 | //
|
---|
212 | // A is lower triangular.
|
---|
213 | //
|
---|
214 | for(j=1; j<=n-1; j++)
|
---|
215 | {
|
---|
216 | v = 0;
|
---|
217 | for(k=j+1; k<=n; k++)
|
---|
218 | {
|
---|
219 | v = v+Math.Abs(a[k,j]);
|
---|
220 | }
|
---|
221 | cnorm[j] = v;
|
---|
222 | }
|
---|
223 | cnorm[n] = 0;
|
---|
224 | }
|
---|
225 | }
|
---|
226 |
|
---|
227 | //
|
---|
228 | // Scale the column norms by TSCAL if the maximum element in CNORM is
|
---|
229 | // greater than BIGNUM.
|
---|
230 | //
|
---|
231 | imax = 1;
|
---|
232 | for(k=2; k<=n; k++)
|
---|
233 | {
|
---|
234 | if( (double)(cnorm[k])>(double)(cnorm[imax]) )
|
---|
235 | {
|
---|
236 | imax = k;
|
---|
237 | }
|
---|
238 | }
|
---|
239 | tmax = cnorm[imax];
|
---|
240 | if( (double)(tmax)<=(double)(bignum) )
|
---|
241 | {
|
---|
242 | tscal = 1;
|
---|
243 | }
|
---|
244 | else
|
---|
245 | {
|
---|
246 | tscal = 1/(smlnum*tmax);
|
---|
247 | for(i_=1; i_<=n;i_++)
|
---|
248 | {
|
---|
249 | cnorm[i_] = tscal*cnorm[i_];
|
---|
250 | }
|
---|
251 | }
|
---|
252 |
|
---|
253 | //
|
---|
254 | // Compute a bound on the computed solution vector to see if the
|
---|
255 | // Level 2 BLAS routine DTRSV can be used.
|
---|
256 | //
|
---|
257 | j = 1;
|
---|
258 | for(k=2; k<=n; k++)
|
---|
259 | {
|
---|
260 | if( (double)(Math.Abs(x[k]))>(double)(Math.Abs(x[j])) )
|
---|
261 | {
|
---|
262 | j = k;
|
---|
263 | }
|
---|
264 | }
|
---|
265 | xmax = Math.Abs(x[j]);
|
---|
266 | xbnd = xmax;
|
---|
267 | if( notran )
|
---|
268 | {
|
---|
269 |
|
---|
270 | //
|
---|
271 | // Compute the growth in A * x = b.
|
---|
272 | //
|
---|
273 | if( upper )
|
---|
274 | {
|
---|
275 | jfirst = n;
|
---|
276 | jlast = 1;
|
---|
277 | jinc = -1;
|
---|
278 | }
|
---|
279 | else
|
---|
280 | {
|
---|
281 | jfirst = 1;
|
---|
282 | jlast = n;
|
---|
283 | jinc = 1;
|
---|
284 | }
|
---|
285 | if( (double)(tscal)!=(double)(1) )
|
---|
286 | {
|
---|
287 | grow = 0;
|
---|
288 | }
|
---|
289 | else
|
---|
290 | {
|
---|
291 | if( nounit )
|
---|
292 | {
|
---|
293 |
|
---|
294 | //
|
---|
295 | // A is non-unit triangular.
|
---|
296 | //
|
---|
297 | // Compute GROW = 1/G(j) and XBND = 1/M(j).
|
---|
298 | // Initially, G(0) = max{x(i), i=1,...,n}.
|
---|
299 | //
|
---|
300 | grow = 1/Math.Max(xbnd, smlnum);
|
---|
301 | xbnd = grow;
|
---|
302 | j = jfirst;
|
---|
303 | while( jinc>0 & j<=jlast | jinc<0 & j>=jlast )
|
---|
304 | {
|
---|
305 |
|
---|
306 | //
|
---|
307 | // Exit the loop if the growth factor is too small.
|
---|
308 | //
|
---|
309 | if( (double)(grow)<=(double)(smlnum) )
|
---|
310 | {
|
---|
311 | break;
|
---|
312 | }
|
---|
313 |
|
---|
314 | //
|
---|
315 | // M(j) = G(j-1) / abs(A(j,j))
|
---|
316 | //
|
---|
317 | tjj = Math.Abs(a[j,j]);
|
---|
318 | xbnd = Math.Min(xbnd, Math.Min(1, tjj)*grow);
|
---|
319 | if( (double)(tjj+cnorm[j])>=(double)(smlnum) )
|
---|
320 | {
|
---|
321 |
|
---|
322 | //
|
---|
323 | // G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
|
---|
324 | //
|
---|
325 | grow = grow*(tjj/(tjj+cnorm[j]));
|
---|
326 | }
|
---|
327 | else
|
---|
328 | {
|
---|
329 |
|
---|
330 | //
|
---|
331 | // G(j) could overflow, set GROW to 0.
|
---|
332 | //
|
---|
333 | grow = 0;
|
---|
334 | }
|
---|
335 | if( j==jlast )
|
---|
336 | {
|
---|
337 | grow = xbnd;
|
---|
338 | }
|
---|
339 | j = j+jinc;
|
---|
340 | }
|
---|
341 | }
|
---|
342 | else
|
---|
343 | {
|
---|
344 |
|
---|
345 | //
|
---|
346 | // A is unit triangular.
|
---|
347 | //
|
---|
348 | // Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
|
---|
349 | //
|
---|
350 | grow = Math.Min(1, 1/Math.Max(xbnd, smlnum));
|
---|
351 | j = jfirst;
|
---|
352 | while( jinc>0 & j<=jlast | jinc<0 & j>=jlast )
|
---|
353 | {
|
---|
354 |
|
---|
355 | //
|
---|
356 | // Exit the loop if the growth factor is too small.
|
---|
357 | //
|
---|
358 | if( (double)(grow)<=(double)(smlnum) )
|
---|
359 | {
|
---|
360 | break;
|
---|
361 | }
|
---|
362 |
|
---|
363 | //
|
---|
364 | // G(j) = G(j-1)*( 1 + CNORM(j) )
|
---|
365 | //
|
---|
366 | grow = grow*(1/(1+cnorm[j]));
|
---|
367 | j = j+jinc;
|
---|
368 | }
|
---|
369 | }
|
---|
370 | }
|
---|
371 | }
|
---|
372 | else
|
---|
373 | {
|
---|
374 |
|
---|
375 | //
|
---|
376 | // Compute the growth in A' * x = b.
|
---|
377 | //
|
---|
378 | if( upper )
|
---|
379 | {
|
---|
380 | jfirst = 1;
|
---|
381 | jlast = n;
|
---|
382 | jinc = 1;
|
---|
383 | }
|
---|
384 | else
|
---|
385 | {
|
---|
386 | jfirst = n;
|
---|
387 | jlast = 1;
|
---|
388 | jinc = -1;
|
---|
389 | }
|
---|
390 | if( (double)(tscal)!=(double)(1) )
|
---|
391 | {
|
---|
392 | grow = 0;
|
---|
393 | }
|
---|
394 | else
|
---|
395 | {
|
---|
396 | if( nounit )
|
---|
397 | {
|
---|
398 |
|
---|
399 | //
|
---|
400 | // A is non-unit triangular.
|
---|
401 | //
|
---|
402 | // Compute GROW = 1/G(j) and XBND = 1/M(j).
|
---|
403 | // Initially, M(0) = max{x(i), i=1,...,n}.
|
---|
404 | //
|
---|
405 | grow = 1/Math.Max(xbnd, smlnum);
|
---|
406 | xbnd = grow;
|
---|
407 | j = jfirst;
|
---|
408 | while( jinc>0 & j<=jlast | jinc<0 & j>=jlast )
|
---|
409 | {
|
---|
410 |
|
---|
411 | //
|
---|
412 | // Exit the loop if the growth factor is too small.
|
---|
413 | //
|
---|
414 | if( (double)(grow)<=(double)(smlnum) )
|
---|
415 | {
|
---|
416 | break;
|
---|
417 | }
|
---|
418 |
|
---|
419 | //
|
---|
420 | // G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
|
---|
421 | //
|
---|
422 | xj = 1+cnorm[j];
|
---|
423 | grow = Math.Min(grow, xbnd/xj);
|
---|
424 |
|
---|
425 | //
|
---|
426 | // M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
|
---|
427 | //
|
---|
428 | tjj = Math.Abs(a[j,j]);
|
---|
429 | if( (double)(xj)>(double)(tjj) )
|
---|
430 | {
|
---|
431 | xbnd = xbnd*(tjj/xj);
|
---|
432 | }
|
---|
433 | if( j==jlast )
|
---|
434 | {
|
---|
435 | grow = Math.Min(grow, xbnd);
|
---|
436 | }
|
---|
437 | j = j+jinc;
|
---|
438 | }
|
---|
439 | }
|
---|
440 | else
|
---|
441 | {
|
---|
442 |
|
---|
443 | //
|
---|
444 | // A is unit triangular.
|
---|
445 | //
|
---|
446 | // Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
|
---|
447 | //
|
---|
448 | grow = Math.Min(1, 1/Math.Max(xbnd, smlnum));
|
---|
449 | j = jfirst;
|
---|
450 | while( jinc>0 & j<=jlast | jinc<0 & j>=jlast )
|
---|
451 | {
|
---|
452 |
|
---|
453 | //
|
---|
454 | // Exit the loop if the growth factor is too small.
|
---|
455 | //
|
---|
456 | if( (double)(grow)<=(double)(smlnum) )
|
---|
457 | {
|
---|
458 | break;
|
---|
459 | }
|
---|
460 |
|
---|
461 | //
|
---|
462 | // G(j) = ( 1 + CNORM(j) )*G(j-1)
|
---|
463 | //
|
---|
464 | xj = 1+cnorm[j];
|
---|
465 | grow = grow/xj;
|
---|
466 | j = j+jinc;
|
---|
467 | }
|
---|
468 | }
|
---|
469 | }
|
---|
470 | }
|
---|
471 | if( (double)(grow*tscal)>(double)(smlnum) )
|
---|
472 | {
|
---|
473 |
|
---|
474 | //
|
---|
475 | // Use the Level 2 BLAS solve if the reciprocal of the bound on
|
---|
476 | // elements of X is not too small.
|
---|
477 | //
|
---|
478 | if( upper & notran | !upper & !notran )
|
---|
479 | {
|
---|
480 | if( nounit )
|
---|
481 | {
|
---|
482 | vd = a[n,n];
|
---|
483 | }
|
---|
484 | else
|
---|
485 | {
|
---|
486 | vd = 1;
|
---|
487 | }
|
---|
488 | x[n] = x[n]/vd;
|
---|
489 | for(i=n-1; i>=1; i--)
|
---|
490 | {
|
---|
491 | ip1 = i+1;
|
---|
492 | if( upper )
|
---|
493 | {
|
---|
494 | v = 0.0;
|
---|
495 | for(i_=ip1; i_<=n;i_++)
|
---|
496 | {
|
---|
497 | v += a[i,i_]*x[i_];
|
---|
498 | }
|
---|
499 | }
|
---|
500 | else
|
---|
501 | {
|
---|
502 | v = 0.0;
|
---|
503 | for(i_=ip1; i_<=n;i_++)
|
---|
504 | {
|
---|
505 | v += a[i_,i]*x[i_];
|
---|
506 | }
|
---|
507 | }
|
---|
508 | if( nounit )
|
---|
509 | {
|
---|
510 | vd = a[i,i];
|
---|
511 | }
|
---|
512 | else
|
---|
513 | {
|
---|
514 | vd = 1;
|
---|
515 | }
|
---|
516 | x[i] = (x[i]-v)/vd;
|
---|
517 | }
|
---|
518 | }
|
---|
519 | else
|
---|
520 | {
|
---|
521 | if( nounit )
|
---|
522 | {
|
---|
523 | vd = a[1,1];
|
---|
524 | }
|
---|
525 | else
|
---|
526 | {
|
---|
527 | vd = 1;
|
---|
528 | }
|
---|
529 | x[1] = x[1]/vd;
|
---|
530 | for(i=2; i<=n; i++)
|
---|
531 | {
|
---|
532 | im1 = i-1;
|
---|
533 | if( upper )
|
---|
534 | {
|
---|
535 | v = 0.0;
|
---|
536 | for(i_=1; i_<=im1;i_++)
|
---|
537 | {
|
---|
538 | v += a[i_,i]*x[i_];
|
---|
539 | }
|
---|
540 | }
|
---|
541 | else
|
---|
542 | {
|
---|
543 | v = 0.0;
|
---|
544 | for(i_=1; i_<=im1;i_++)
|
---|
545 | {
|
---|
546 | v += a[i,i_]*x[i_];
|
---|
547 | }
|
---|
548 | }
|
---|
549 | if( nounit )
|
---|
550 | {
|
---|
551 | vd = a[i,i];
|
---|
552 | }
|
---|
553 | else
|
---|
554 | {
|
---|
555 | vd = 1;
|
---|
556 | }
|
---|
557 | x[i] = (x[i]-v)/vd;
|
---|
558 | }
|
---|
559 | }
|
---|
560 | }
|
---|
561 | else
|
---|
562 | {
|
---|
563 |
|
---|
564 | //
|
---|
565 | // Use a Level 1 BLAS solve, scaling intermediate results.
|
---|
566 | //
|
---|
567 | if( (double)(xmax)>(double)(bignum) )
|
---|
568 | {
|
---|
569 |
|
---|
570 | //
|
---|
571 | // Scale X so that its components are less than or equal to
|
---|
572 | // BIGNUM in absolute value.
|
---|
573 | //
|
---|
574 | s = bignum/xmax;
|
---|
575 | for(i_=1; i_<=n;i_++)
|
---|
576 | {
|
---|
577 | x[i_] = s*x[i_];
|
---|
578 | }
|
---|
579 | xmax = bignum;
|
---|
580 | }
|
---|
581 | if( notran )
|
---|
582 | {
|
---|
583 |
|
---|
584 | //
|
---|
585 | // Solve A * x = b
|
---|
586 | //
|
---|
587 | j = jfirst;
|
---|
588 | while( jinc>0 & j<=jlast | jinc<0 & j>=jlast )
|
---|
589 | {
|
---|
590 |
|
---|
591 | //
|
---|
592 | // Compute x(j) = b(j) / A(j,j), scaling x if necessary.
|
---|
593 | //
|
---|
594 | xj = Math.Abs(x[j]);
|
---|
595 | flg = 0;
|
---|
596 | if( nounit )
|
---|
597 | {
|
---|
598 | tjjs = a[j,j]*tscal;
|
---|
599 | }
|
---|
600 | else
|
---|
601 | {
|
---|
602 | tjjs = tscal;
|
---|
603 | if( (double)(tscal)==(double)(1) )
|
---|
604 | {
|
---|
605 | flg = 100;
|
---|
606 | }
|
---|
607 | }
|
---|
608 | if( flg!=100 )
|
---|
609 | {
|
---|
610 | tjj = Math.Abs(tjjs);
|
---|
611 | if( (double)(tjj)>(double)(smlnum) )
|
---|
612 | {
|
---|
613 |
|
---|
614 | //
|
---|
615 | // abs(A(j,j)) > SMLNUM:
|
---|
616 | //
|
---|
617 | if( (double)(tjj)<(double)(1) )
|
---|
618 | {
|
---|
619 | if( (double)(xj)>(double)(tjj*bignum) )
|
---|
620 | {
|
---|
621 |
|
---|
622 | //
|
---|
623 | // Scale x by 1/b(j).
|
---|
624 | //
|
---|
625 | rec = 1/xj;
|
---|
626 | for(i_=1; i_<=n;i_++)
|
---|
627 | {
|
---|
628 | x[i_] = rec*x[i_];
|
---|
629 | }
|
---|
630 | s = s*rec;
|
---|
631 | xmax = xmax*rec;
|
---|
632 | }
|
---|
633 | }
|
---|
634 | x[j] = x[j]/tjjs;
|
---|
635 | xj = Math.Abs(x[j]);
|
---|
636 | }
|
---|
637 | else
|
---|
638 | {
|
---|
639 | if( (double)(tjj)>(double)(0) )
|
---|
640 | {
|
---|
641 |
|
---|
642 | //
|
---|
643 | // 0 < abs(A(j,j)) <= SMLNUM:
|
---|
644 | //
|
---|
645 | if( (double)(xj)>(double)(tjj*bignum) )
|
---|
646 | {
|
---|
647 |
|
---|
648 | //
|
---|
649 | // Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
|
---|
650 | // to avoid overflow when dividing by A(j,j).
|
---|
651 | //
|
---|
652 | rec = tjj*bignum/xj;
|
---|
653 | if( (double)(cnorm[j])>(double)(1) )
|
---|
654 | {
|
---|
655 |
|
---|
656 | //
|
---|
657 | // Scale by 1/CNORM(j) to avoid overflow when
|
---|
658 | // multiplying x(j) times column j.
|
---|
659 | //
|
---|
660 | rec = rec/cnorm[j];
|
---|
661 | }
|
---|
662 | for(i_=1; i_<=n;i_++)
|
---|
663 | {
|
---|
664 | x[i_] = rec*x[i_];
|
---|
665 | }
|
---|
666 | s = s*rec;
|
---|
667 | xmax = xmax*rec;
|
---|
668 | }
|
---|
669 | x[j] = x[j]/tjjs;
|
---|
670 | xj = Math.Abs(x[j]);
|
---|
671 | }
|
---|
672 | else
|
---|
673 | {
|
---|
674 |
|
---|
675 | //
|
---|
676 | // A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
|
---|
677 | // scale = 0, and compute a solution to A*x = 0.
|
---|
678 | //
|
---|
679 | for(i=1; i<=n; i++)
|
---|
680 | {
|
---|
681 | x[i] = 0;
|
---|
682 | }
|
---|
683 | x[j] = 1;
|
---|
684 | xj = 1;
|
---|
685 | s = 0;
|
---|
686 | xmax = 0;
|
---|
687 | }
|
---|
688 | }
|
---|
689 | }
|
---|
690 |
|
---|
691 | //
|
---|
692 | // Scale x if necessary to avoid overflow when adding a
|
---|
693 | // multiple of column j of A.
|
---|
694 | //
|
---|
695 | if( (double)(xj)>(double)(1) )
|
---|
696 | {
|
---|
697 | rec = 1/xj;
|
---|
698 | if( (double)(cnorm[j])>(double)((bignum-xmax)*rec) )
|
---|
699 | {
|
---|
700 |
|
---|
701 | //
|
---|
702 | // Scale x by 1/(2*abs(x(j))).
|
---|
703 | //
|
---|
704 | rec = rec*0.5;
|
---|
705 | for(i_=1; i_<=n;i_++)
|
---|
706 | {
|
---|
707 | x[i_] = rec*x[i_];
|
---|
708 | }
|
---|
709 | s = s*rec;
|
---|
710 | }
|
---|
711 | }
|
---|
712 | else
|
---|
713 | {
|
---|
714 | if( (double)(xj*cnorm[j])>(double)(bignum-xmax) )
|
---|
715 | {
|
---|
716 |
|
---|
717 | //
|
---|
718 | // Scale x by 1/2.
|
---|
719 | //
|
---|
720 | for(i_=1; i_<=n;i_++)
|
---|
721 | {
|
---|
722 | x[i_] = 0.5*x[i_];
|
---|
723 | }
|
---|
724 | s = s*0.5;
|
---|
725 | }
|
---|
726 | }
|
---|
727 | if( upper )
|
---|
728 | {
|
---|
729 | if( j>1 )
|
---|
730 | {
|
---|
731 |
|
---|
732 | //
|
---|
733 | // Compute the update
|
---|
734 | // x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
|
---|
735 | //
|
---|
736 | v = x[j]*tscal;
|
---|
737 | jm1 = j-1;
|
---|
738 | for(i_=1; i_<=jm1;i_++)
|
---|
739 | {
|
---|
740 | x[i_] = x[i_] - v*a[i_,j];
|
---|
741 | }
|
---|
742 | i = 1;
|
---|
743 | for(k=2; k<=j-1; k++)
|
---|
744 | {
|
---|
745 | if( (double)(Math.Abs(x[k]))>(double)(Math.Abs(x[i])) )
|
---|
746 | {
|
---|
747 | i = k;
|
---|
748 | }
|
---|
749 | }
|
---|
750 | xmax = Math.Abs(x[i]);
|
---|
751 | }
|
---|
752 | }
|
---|
753 | else
|
---|
754 | {
|
---|
755 | if( j<n )
|
---|
756 | {
|
---|
757 |
|
---|
758 | //
|
---|
759 | // Compute the update
|
---|
760 | // x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
|
---|
761 | //
|
---|
762 | jp1 = j+1;
|
---|
763 | v = x[j]*tscal;
|
---|
764 | for(i_=jp1; i_<=n;i_++)
|
---|
765 | {
|
---|
766 | x[i_] = x[i_] - v*a[i_,j];
|
---|
767 | }
|
---|
768 | i = j+1;
|
---|
769 | for(k=j+2; k<=n; k++)
|
---|
770 | {
|
---|
771 | if( (double)(Math.Abs(x[k]))>(double)(Math.Abs(x[i])) )
|
---|
772 | {
|
---|
773 | i = k;
|
---|
774 | }
|
---|
775 | }
|
---|
776 | xmax = Math.Abs(x[i]);
|
---|
777 | }
|
---|
778 | }
|
---|
779 | j = j+jinc;
|
---|
780 | }
|
---|
781 | }
|
---|
782 | else
|
---|
783 | {
|
---|
784 |
|
---|
785 | //
|
---|
786 | // Solve A' * x = b
|
---|
787 | //
|
---|
788 | j = jfirst;
|
---|
789 | while( jinc>0 & j<=jlast | jinc<0 & j>=jlast )
|
---|
790 | {
|
---|
791 |
|
---|
792 | //
|
---|
793 | // Compute x(j) = b(j) - sum A(k,j)*x(k).
|
---|
794 | // k<>j
|
---|
795 | //
|
---|
796 | xj = Math.Abs(x[j]);
|
---|
797 | uscal = tscal;
|
---|
798 | rec = 1/Math.Max(xmax, 1);
|
---|
799 | if( (double)(cnorm[j])>(double)((bignum-xj)*rec) )
|
---|
800 | {
|
---|
801 |
|
---|
802 | //
|
---|
803 | // If x(j) could overflow, scale x by 1/(2*XMAX).
|
---|
804 | //
|
---|
805 | rec = rec*0.5;
|
---|
806 | if( nounit )
|
---|
807 | {
|
---|
808 | tjjs = a[j,j]*tscal;
|
---|
809 | }
|
---|
810 | else
|
---|
811 | {
|
---|
812 | tjjs = tscal;
|
---|
813 | }
|
---|
814 | tjj = Math.Abs(tjjs);
|
---|
815 | if( (double)(tjj)>(double)(1) )
|
---|
816 | {
|
---|
817 |
|
---|
818 | //
|
---|
819 | // Divide by A(j,j) when scaling x if A(j,j) > 1.
|
---|
820 | //
|
---|
821 | rec = Math.Min(1, rec*tjj);
|
---|
822 | uscal = uscal/tjjs;
|
---|
823 | }
|
---|
824 | if( (double)(rec)<(double)(1) )
|
---|
825 | {
|
---|
826 | for(i_=1; i_<=n;i_++)
|
---|
827 | {
|
---|
828 | x[i_] = rec*x[i_];
|
---|
829 | }
|
---|
830 | s = s*rec;
|
---|
831 | xmax = xmax*rec;
|
---|
832 | }
|
---|
833 | }
|
---|
834 | sumj = 0;
|
---|
835 | if( (double)(uscal)==(double)(1) )
|
---|
836 | {
|
---|
837 |
|
---|
838 | //
|
---|
839 | // If the scaling needed for A in the dot product is 1,
|
---|
840 | // call DDOT to perform the dot product.
|
---|
841 | //
|
---|
842 | if( upper )
|
---|
843 | {
|
---|
844 | if( j>1 )
|
---|
845 | {
|
---|
846 | jm1 = j-1;
|
---|
847 | sumj = 0.0;
|
---|
848 | for(i_=1; i_<=jm1;i_++)
|
---|
849 | {
|
---|
850 | sumj += a[i_,j]*x[i_];
|
---|
851 | }
|
---|
852 | }
|
---|
853 | else
|
---|
854 | {
|
---|
855 | sumj = 0;
|
---|
856 | }
|
---|
857 | }
|
---|
858 | else
|
---|
859 | {
|
---|
860 | if( j<n )
|
---|
861 | {
|
---|
862 | jp1 = j+1;
|
---|
863 | sumj = 0.0;
|
---|
864 | for(i_=jp1; i_<=n;i_++)
|
---|
865 | {
|
---|
866 | sumj += a[i_,j]*x[i_];
|
---|
867 | }
|
---|
868 | }
|
---|
869 | }
|
---|
870 | }
|
---|
871 | else
|
---|
872 | {
|
---|
873 |
|
---|
874 | //
|
---|
875 | // Otherwise, use in-line code for the dot product.
|
---|
876 | //
|
---|
877 | if( upper )
|
---|
878 | {
|
---|
879 | for(i=1; i<=j-1; i++)
|
---|
880 | {
|
---|
881 | v = a[i,j]*uscal;
|
---|
882 | sumj = sumj+v*x[i];
|
---|
883 | }
|
---|
884 | }
|
---|
885 | else
|
---|
886 | {
|
---|
887 | if( j<n )
|
---|
888 | {
|
---|
889 | for(i=j+1; i<=n; i++)
|
---|
890 | {
|
---|
891 | v = a[i,j]*uscal;
|
---|
892 | sumj = sumj+v*x[i];
|
---|
893 | }
|
---|
894 | }
|
---|
895 | }
|
---|
896 | }
|
---|
897 | if( (double)(uscal)==(double)(tscal) )
|
---|
898 | {
|
---|
899 |
|
---|
900 | //
|
---|
901 | // Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
|
---|
902 | // was not used to scale the dotproduct.
|
---|
903 | //
|
---|
904 | x[j] = x[j]-sumj;
|
---|
905 | xj = Math.Abs(x[j]);
|
---|
906 | flg = 0;
|
---|
907 | if( nounit )
|
---|
908 | {
|
---|
909 | tjjs = a[j,j]*tscal;
|
---|
910 | }
|
---|
911 | else
|
---|
912 | {
|
---|
913 | tjjs = tscal;
|
---|
914 | if( (double)(tscal)==(double)(1) )
|
---|
915 | {
|
---|
916 | flg = 150;
|
---|
917 | }
|
---|
918 | }
|
---|
919 |
|
---|
920 | //
|
---|
921 | // Compute x(j) = x(j) / A(j,j), scaling if necessary.
|
---|
922 | //
|
---|
923 | if( flg!=150 )
|
---|
924 | {
|
---|
925 | tjj = Math.Abs(tjjs);
|
---|
926 | if( (double)(tjj)>(double)(smlnum) )
|
---|
927 | {
|
---|
928 |
|
---|
929 | //
|
---|
930 | // abs(A(j,j)) > SMLNUM:
|
---|
931 | //
|
---|
932 | if( (double)(tjj)<(double)(1) )
|
---|
933 | {
|
---|
934 | if( (double)(xj)>(double)(tjj*bignum) )
|
---|
935 | {
|
---|
936 |
|
---|
937 | //
|
---|
938 | // Scale X by 1/abs(x(j)).
|
---|
939 | //
|
---|
940 | rec = 1/xj;
|
---|
941 | for(i_=1; i_<=n;i_++)
|
---|
942 | {
|
---|
943 | x[i_] = rec*x[i_];
|
---|
944 | }
|
---|
945 | s = s*rec;
|
---|
946 | xmax = xmax*rec;
|
---|
947 | }
|
---|
948 | }
|
---|
949 | x[j] = x[j]/tjjs;
|
---|
950 | }
|
---|
951 | else
|
---|
952 | {
|
---|
953 | if( (double)(tjj)>(double)(0) )
|
---|
954 | {
|
---|
955 |
|
---|
956 | //
|
---|
957 | // 0 < abs(A(j,j)) <= SMLNUM:
|
---|
958 | //
|
---|
959 | if( (double)(xj)>(double)(tjj*bignum) )
|
---|
960 | {
|
---|
961 |
|
---|
962 | //
|
---|
963 | // Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
|
---|
964 | //
|
---|
965 | rec = tjj*bignum/xj;
|
---|
966 | for(i_=1; i_<=n;i_++)
|
---|
967 | {
|
---|
968 | x[i_] = rec*x[i_];
|
---|
969 | }
|
---|
970 | s = s*rec;
|
---|
971 | xmax = xmax*rec;
|
---|
972 | }
|
---|
973 | x[j] = x[j]/tjjs;
|
---|
974 | }
|
---|
975 | else
|
---|
976 | {
|
---|
977 |
|
---|
978 | //
|
---|
979 | // A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
|
---|
980 | // scale = 0, and compute a solution to A'*x = 0.
|
---|
981 | //
|
---|
982 | for(i=1; i<=n; i++)
|
---|
983 | {
|
---|
984 | x[i] = 0;
|
---|
985 | }
|
---|
986 | x[j] = 1;
|
---|
987 | s = 0;
|
---|
988 | xmax = 0;
|
---|
989 | }
|
---|
990 | }
|
---|
991 | }
|
---|
992 | }
|
---|
993 | else
|
---|
994 | {
|
---|
995 |
|
---|
996 | //
|
---|
997 | // Compute x(j) := x(j) / A(j,j) - sumj if the dot
|
---|
998 | // product has already been divided by 1/A(j,j).
|
---|
999 | //
|
---|
1000 | x[j] = x[j]/tjjs-sumj;
|
---|
1001 | }
|
---|
1002 | xmax = Math.Max(xmax, Math.Abs(x[j]));
|
---|
1003 | j = j+jinc;
|
---|
1004 | }
|
---|
1005 | }
|
---|
1006 | s = s/tscal;
|
---|
1007 | }
|
---|
1008 |
|
---|
1009 | //
|
---|
1010 | // Scale the column norms by 1/TSCAL for return.
|
---|
1011 | //
|
---|
1012 | if( (double)(tscal)!=(double)(1) )
|
---|
1013 | {
|
---|
1014 | v = 1/tscal;
|
---|
1015 | for(i_=1; i_<=n;i_++)
|
---|
1016 | {
|
---|
1017 | cnorm[i_] = v*cnorm[i_];
|
---|
1018 | }
|
---|
1019 | }
|
---|
1020 | }
|
---|
1021 | }
|
---|
1022 | }
|
---|