1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class sinverse
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Inversion of a symmetric indefinite matrix
|
---|
35 |
|
---|
36 | The algorithm gets an LDLT-decomposition as an input, generates matrix A^-1
|
---|
37 | and saves the lower or upper triangle of an inverse matrix depending on the
|
---|
38 | input (U*D*U' or L*D*L').
|
---|
39 |
|
---|
40 | Input parameters:
|
---|
41 | A - LDLT-decomposition of the matrix,
|
---|
42 | Output of subroutine SMatrixLDLT.
|
---|
43 | N - size of matrix A.
|
---|
44 | IsUpper - storage format. If IsUpper = True, then the symmetric matrix
|
---|
45 | is given as decomposition A = U*D*U' and this decomposition
|
---|
46 | is stored in the upper triangle of matrix A and on the main
|
---|
47 | diagonal, and the lower triangle of matrix A is not used.
|
---|
48 | Pivots - a table of permutations, output of subroutine SMatrixLDLT.
|
---|
49 |
|
---|
50 | Output parameters:
|
---|
51 | A - inverse of the matrix, whose LDLT-decomposition was stored
|
---|
52 | in matrix A as a subroutine input.
|
---|
53 | Array with elements [0..N-1, 0..N-1].
|
---|
54 | If IsUpper = True, then A contains the upper triangle of
|
---|
55 | matrix A^-1, and the elements below the main diagonal are
|
---|
56 | not used nor changed. The same applies if IsUpper = False.
|
---|
57 |
|
---|
58 | Result:
|
---|
59 | True, if the matrix is not singular.
|
---|
60 | False, if the matrix is singular and could not be inverted.
|
---|
61 |
|
---|
62 | -- LAPACK routine (version 3.0) --
|
---|
63 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
64 | Courant Institute, Argonne National Lab, and Rice University
|
---|
65 | March 31, 1993
|
---|
66 | *************************************************************************/
|
---|
67 | public static bool smatrixldltinverse(ref double[,] a,
|
---|
68 | ref int[] pivots,
|
---|
69 | int n,
|
---|
70 | bool isupper)
|
---|
71 | {
|
---|
72 | bool result = new bool();
|
---|
73 | double[] work = new double[0];
|
---|
74 | double[] work2 = new double[0];
|
---|
75 | int i = 0;
|
---|
76 | int k = 0;
|
---|
77 | int kp = 0;
|
---|
78 | int kstep = 0;
|
---|
79 | double ak = 0;
|
---|
80 | double akkp1 = 0;
|
---|
81 | double akp1 = 0;
|
---|
82 | double d = 0;
|
---|
83 | double t = 0;
|
---|
84 | double temp = 0;
|
---|
85 | int km1 = 0;
|
---|
86 | int kp1 = 0;
|
---|
87 | int l = 0;
|
---|
88 | int i1 = 0;
|
---|
89 | int i2 = 0;
|
---|
90 | double v = 0;
|
---|
91 | int i_ = 0;
|
---|
92 | int i1_ = 0;
|
---|
93 |
|
---|
94 | work = new double[n+1];
|
---|
95 | work2 = new double[n+1];
|
---|
96 | result = true;
|
---|
97 |
|
---|
98 | //
|
---|
99 | // Quick return if possible
|
---|
100 | //
|
---|
101 | if( n==0 )
|
---|
102 | {
|
---|
103 | return result;
|
---|
104 | }
|
---|
105 |
|
---|
106 | //
|
---|
107 | // Check that the diagonal matrix D is nonsingular.
|
---|
108 | //
|
---|
109 | for(i=0; i<=n-1; i++)
|
---|
110 | {
|
---|
111 | if( pivots[i]>=0 & (double)(a[i,i])==(double)(0) )
|
---|
112 | {
|
---|
113 | result = false;
|
---|
114 | return result;
|
---|
115 | }
|
---|
116 | }
|
---|
117 | if( isupper )
|
---|
118 | {
|
---|
119 |
|
---|
120 | //
|
---|
121 | // Compute inv(A) from the factorization A = U*D*U'.
|
---|
122 | //
|
---|
123 | // K+1 is the main loop index, increasing from 1 to N in steps of
|
---|
124 | // 1 or 2, depending on the size of the diagonal blocks.
|
---|
125 | //
|
---|
126 | k = 0;
|
---|
127 | while( k<=n-1 )
|
---|
128 | {
|
---|
129 | if( pivots[k]>=0 )
|
---|
130 | {
|
---|
131 |
|
---|
132 | //
|
---|
133 | // 1 x 1 diagonal block
|
---|
134 | //
|
---|
135 | // Invert the diagonal block.
|
---|
136 | //
|
---|
137 | a[k,k] = 1/a[k,k];
|
---|
138 |
|
---|
139 | //
|
---|
140 | // Compute column K+1 of the inverse.
|
---|
141 | //
|
---|
142 | if( k>0 )
|
---|
143 | {
|
---|
144 | i1_ = (0) - (1);
|
---|
145 | for(i_=1; i_<=k;i_++)
|
---|
146 | {
|
---|
147 | work[i_] = a[i_+i1_,k];
|
---|
148 | }
|
---|
149 | sblas.symmetricmatrixvectormultiply(ref a, isupper, 1-1, k+1-1-1, ref work, -1, ref work2);
|
---|
150 | i1_ = (1) - (0);
|
---|
151 | for(i_=0; i_<=k-1;i_++)
|
---|
152 | {
|
---|
153 | a[i_,k] = work2[i_+i1_];
|
---|
154 | }
|
---|
155 | v = 0.0;
|
---|
156 | for(i_=1; i_<=k;i_++)
|
---|
157 | {
|
---|
158 | v += work2[i_]*work[i_];
|
---|
159 | }
|
---|
160 | a[k,k] = a[k,k]-v;
|
---|
161 | }
|
---|
162 | kstep = 1;
|
---|
163 | }
|
---|
164 | else
|
---|
165 | {
|
---|
166 |
|
---|
167 | //
|
---|
168 | // 2 x 2 diagonal block
|
---|
169 | //
|
---|
170 | // Invert the diagonal block.
|
---|
171 | //
|
---|
172 | t = Math.Abs(a[k,k+1]);
|
---|
173 | ak = a[k,k]/t;
|
---|
174 | akp1 = a[k+1,k+1]/t;
|
---|
175 | akkp1 = a[k,k+1]/t;
|
---|
176 | d = t*(ak*akp1-1);
|
---|
177 | a[k,k] = akp1/d;
|
---|
178 | a[k+1,k+1] = ak/d;
|
---|
179 | a[k,k+1] = -(akkp1/d);
|
---|
180 |
|
---|
181 | //
|
---|
182 | // Compute columns K+1 and K+1+1 of the inverse.
|
---|
183 | //
|
---|
184 | if( k>0 )
|
---|
185 | {
|
---|
186 | i1_ = (0) - (1);
|
---|
187 | for(i_=1; i_<=k;i_++)
|
---|
188 | {
|
---|
189 | work[i_] = a[i_+i1_,k];
|
---|
190 | }
|
---|
191 | sblas.symmetricmatrixvectormultiply(ref a, isupper, 0, k-1, ref work, -1, ref work2);
|
---|
192 | i1_ = (1) - (0);
|
---|
193 | for(i_=0; i_<=k-1;i_++)
|
---|
194 | {
|
---|
195 | a[i_,k] = work2[i_+i1_];
|
---|
196 | }
|
---|
197 | v = 0.0;
|
---|
198 | for(i_=1; i_<=k;i_++)
|
---|
199 | {
|
---|
200 | v += work[i_]*work2[i_];
|
---|
201 | }
|
---|
202 | a[k,k] = a[k,k]-v;
|
---|
203 | v = 0.0;
|
---|
204 | for(i_=0; i_<=k-1;i_++)
|
---|
205 | {
|
---|
206 | v += a[i_,k]*a[i_,k+1];
|
---|
207 | }
|
---|
208 | a[k,k+1] = a[k,k+1]-v;
|
---|
209 | i1_ = (0) - (1);
|
---|
210 | for(i_=1; i_<=k;i_++)
|
---|
211 | {
|
---|
212 | work[i_] = a[i_+i1_,k+1];
|
---|
213 | }
|
---|
214 | sblas.symmetricmatrixvectormultiply(ref a, isupper, 0, k-1, ref work, -1, ref work2);
|
---|
215 | i1_ = (1) - (0);
|
---|
216 | for(i_=0; i_<=k-1;i_++)
|
---|
217 | {
|
---|
218 | a[i_,k+1] = work2[i_+i1_];
|
---|
219 | }
|
---|
220 | v = 0.0;
|
---|
221 | for(i_=1; i_<=k;i_++)
|
---|
222 | {
|
---|
223 | v += work[i_]*work2[i_];
|
---|
224 | }
|
---|
225 | a[k+1,k+1] = a[k+1,k+1]-v;
|
---|
226 | }
|
---|
227 | kstep = 2;
|
---|
228 | }
|
---|
229 | if( pivots[k]>=0 )
|
---|
230 | {
|
---|
231 | kp = pivots[k];
|
---|
232 | }
|
---|
233 | else
|
---|
234 | {
|
---|
235 | kp = n+pivots[k];
|
---|
236 | }
|
---|
237 | if( kp!=k )
|
---|
238 | {
|
---|
239 |
|
---|
240 | //
|
---|
241 | // Interchange rows and columns K and KP in the leading
|
---|
242 | // submatrix
|
---|
243 | //
|
---|
244 | i1_ = (0) - (1);
|
---|
245 | for(i_=1; i_<=kp;i_++)
|
---|
246 | {
|
---|
247 | work[i_] = a[i_+i1_,k];
|
---|
248 | }
|
---|
249 | for(i_=0; i_<=kp-1;i_++)
|
---|
250 | {
|
---|
251 | a[i_,k] = a[i_,kp];
|
---|
252 | }
|
---|
253 | i1_ = (1) - (0);
|
---|
254 | for(i_=0; i_<=kp-1;i_++)
|
---|
255 | {
|
---|
256 | a[i_,kp] = work[i_+i1_];
|
---|
257 | }
|
---|
258 | i1_ = (kp+1) - (1);
|
---|
259 | for(i_=1; i_<=k-1-kp;i_++)
|
---|
260 | {
|
---|
261 | work[i_] = a[i_+i1_,k];
|
---|
262 | }
|
---|
263 | for(i_=kp+1; i_<=k-1;i_++)
|
---|
264 | {
|
---|
265 | a[i_,k] = a[kp,i_];
|
---|
266 | }
|
---|
267 | i1_ = (1) - (kp+1);
|
---|
268 | for(i_=kp+1; i_<=k-1;i_++)
|
---|
269 | {
|
---|
270 | a[kp,i_] = work[i_+i1_];
|
---|
271 | }
|
---|
272 | temp = a[k,k];
|
---|
273 | a[k,k] = a[kp,kp];
|
---|
274 | a[kp,kp] = temp;
|
---|
275 | if( kstep==2 )
|
---|
276 | {
|
---|
277 | temp = a[k,k+1];
|
---|
278 | a[k,k+1] = a[kp,k+1];
|
---|
279 | a[kp,k+1] = temp;
|
---|
280 | }
|
---|
281 | }
|
---|
282 | k = k+kstep;
|
---|
283 | }
|
---|
284 | }
|
---|
285 | else
|
---|
286 | {
|
---|
287 |
|
---|
288 | //
|
---|
289 | // Compute inv(A) from the factorization A = L*D*L'.
|
---|
290 | //
|
---|
291 | // K is the main loop index, increasing from 0 to N-1 in steps of
|
---|
292 | // 1 or 2, depending on the size of the diagonal blocks.
|
---|
293 | //
|
---|
294 | k = n-1;
|
---|
295 | while( k>=0 )
|
---|
296 | {
|
---|
297 | if( pivots[k]>=0 )
|
---|
298 | {
|
---|
299 |
|
---|
300 | //
|
---|
301 | // 1 x 1 diagonal block
|
---|
302 | //
|
---|
303 | // Invert the diagonal block.
|
---|
304 | //
|
---|
305 | a[k,k] = 1/a[k,k];
|
---|
306 |
|
---|
307 | //
|
---|
308 | // Compute column K+1 of the inverse.
|
---|
309 | //
|
---|
310 | if( k<n-1 )
|
---|
311 | {
|
---|
312 | i1_ = (k+1) - (1);
|
---|
313 | for(i_=1; i_<=n-k-1;i_++)
|
---|
314 | {
|
---|
315 | work[i_] = a[i_+i1_,k];
|
---|
316 | }
|
---|
317 | sblas.symmetricmatrixvectormultiply(ref a, isupper, k+1, n-1, ref work, -1, ref work2);
|
---|
318 | i1_ = (1) - (k+1);
|
---|
319 | for(i_=k+1; i_<=n-1;i_++)
|
---|
320 | {
|
---|
321 | a[i_,k] = work2[i_+i1_];
|
---|
322 | }
|
---|
323 | v = 0.0;
|
---|
324 | for(i_=1; i_<=n-k-1;i_++)
|
---|
325 | {
|
---|
326 | v += work[i_]*work2[i_];
|
---|
327 | }
|
---|
328 | a[k,k] = a[k,k]-v;
|
---|
329 | }
|
---|
330 | kstep = 1;
|
---|
331 | }
|
---|
332 | else
|
---|
333 | {
|
---|
334 |
|
---|
335 | //
|
---|
336 | // 2 x 2 diagonal block
|
---|
337 | //
|
---|
338 | // Invert the diagonal block.
|
---|
339 | //
|
---|
340 | t = Math.Abs(a[k,k-1]);
|
---|
341 | ak = a[k-1,k-1]/t;
|
---|
342 | akp1 = a[k,k]/t;
|
---|
343 | akkp1 = a[k,k-1]/t;
|
---|
344 | d = t*(ak*akp1-1);
|
---|
345 | a[k-1,k-1] = akp1/d;
|
---|
346 | a[k,k] = ak/d;
|
---|
347 | a[k,k-1] = -(akkp1/d);
|
---|
348 |
|
---|
349 | //
|
---|
350 | // Compute columns K+1-1 and K+1 of the inverse.
|
---|
351 | //
|
---|
352 | if( k<n-1 )
|
---|
353 | {
|
---|
354 | i1_ = (k+1) - (1);
|
---|
355 | for(i_=1; i_<=n-k-1;i_++)
|
---|
356 | {
|
---|
357 | work[i_] = a[i_+i1_,k];
|
---|
358 | }
|
---|
359 | sblas.symmetricmatrixvectormultiply(ref a, isupper, k+1, n-1, ref work, -1, ref work2);
|
---|
360 | i1_ = (1) - (k+1);
|
---|
361 | for(i_=k+1; i_<=n-1;i_++)
|
---|
362 | {
|
---|
363 | a[i_,k] = work2[i_+i1_];
|
---|
364 | }
|
---|
365 | v = 0.0;
|
---|
366 | for(i_=1; i_<=n-k-1;i_++)
|
---|
367 | {
|
---|
368 | v += work[i_]*work2[i_];
|
---|
369 | }
|
---|
370 | a[k,k] = a[k,k]-v;
|
---|
371 | v = 0.0;
|
---|
372 | for(i_=k+1; i_<=n-1;i_++)
|
---|
373 | {
|
---|
374 | v += a[i_,k]*a[i_,k-1];
|
---|
375 | }
|
---|
376 | a[k,k-1] = a[k,k-1]-v;
|
---|
377 | i1_ = (k+1) - (1);
|
---|
378 | for(i_=1; i_<=n-k-1;i_++)
|
---|
379 | {
|
---|
380 | work[i_] = a[i_+i1_,k-1];
|
---|
381 | }
|
---|
382 | sblas.symmetricmatrixvectormultiply(ref a, isupper, k+1, n-1, ref work, -1, ref work2);
|
---|
383 | i1_ = (1) - (k+1);
|
---|
384 | for(i_=k+1; i_<=n-1;i_++)
|
---|
385 | {
|
---|
386 | a[i_,k-1] = work2[i_+i1_];
|
---|
387 | }
|
---|
388 | v = 0.0;
|
---|
389 | for(i_=1; i_<=n-k-1;i_++)
|
---|
390 | {
|
---|
391 | v += work[i_]*work2[i_];
|
---|
392 | }
|
---|
393 | a[k-1,k-1] = a[k-1,k-1]-v;
|
---|
394 | }
|
---|
395 | kstep = 2;
|
---|
396 | }
|
---|
397 | if( pivots[k]>=0 )
|
---|
398 | {
|
---|
399 | kp = pivots[k];
|
---|
400 | }
|
---|
401 | else
|
---|
402 | {
|
---|
403 | kp = pivots[k]+n;
|
---|
404 | }
|
---|
405 | if( kp!=k )
|
---|
406 | {
|
---|
407 |
|
---|
408 | //
|
---|
409 | // Interchange rows and columns K and KP
|
---|
410 | //
|
---|
411 | if( kp<n-1 )
|
---|
412 | {
|
---|
413 | i1_ = (kp+1) - (1);
|
---|
414 | for(i_=1; i_<=n-kp-1;i_++)
|
---|
415 | {
|
---|
416 | work[i_] = a[i_+i1_,k];
|
---|
417 | }
|
---|
418 | for(i_=kp+1; i_<=n-1;i_++)
|
---|
419 | {
|
---|
420 | a[i_,k] = a[i_,kp];
|
---|
421 | }
|
---|
422 | i1_ = (1) - (kp+1);
|
---|
423 | for(i_=kp+1; i_<=n-1;i_++)
|
---|
424 | {
|
---|
425 | a[i_,kp] = work[i_+i1_];
|
---|
426 | }
|
---|
427 | }
|
---|
428 | i1_ = (k+1) - (1);
|
---|
429 | for(i_=1; i_<=kp-k-1;i_++)
|
---|
430 | {
|
---|
431 | work[i_] = a[i_+i1_,k];
|
---|
432 | }
|
---|
433 | for(i_=k+1; i_<=kp-1;i_++)
|
---|
434 | {
|
---|
435 | a[i_,k] = a[kp,i_];
|
---|
436 | }
|
---|
437 | i1_ = (1) - (k+1);
|
---|
438 | for(i_=k+1; i_<=kp-1;i_++)
|
---|
439 | {
|
---|
440 | a[kp,i_] = work[i_+i1_];
|
---|
441 | }
|
---|
442 | temp = a[k,k];
|
---|
443 | a[k,k] = a[kp,kp];
|
---|
444 | a[kp,kp] = temp;
|
---|
445 | if( kstep==2 )
|
---|
446 | {
|
---|
447 | temp = a[k,k-1];
|
---|
448 | a[k,k-1] = a[kp,k-1];
|
---|
449 | a[kp,k-1] = temp;
|
---|
450 | }
|
---|
451 | }
|
---|
452 | k = k-kstep;
|
---|
453 | }
|
---|
454 | }
|
---|
455 | return result;
|
---|
456 | }
|
---|
457 |
|
---|
458 |
|
---|
459 | /*************************************************************************
|
---|
460 | Inversion of a symmetric indefinite matrix
|
---|
461 |
|
---|
462 | Given a lower or upper triangle of matrix A, the algorithm generates
|
---|
463 | matrix A^-1 and saves the lower or upper triangle depending on the input.
|
---|
464 |
|
---|
465 | Input parameters:
|
---|
466 | A - matrix to be inverted (upper or lower triangle).
|
---|
467 | Array with elements [0..N-1, 0..N-1].
|
---|
468 | N - size of matrix A.
|
---|
469 | IsUpper - storage format. If IsUpper = True, then the upper
|
---|
470 | triangle of matrix A is given, otherwise the lower
|
---|
471 | triangle is given.
|
---|
472 |
|
---|
473 | Output parameters:
|
---|
474 | A - inverse of matrix A.
|
---|
475 | Array with elements [0..N-1, 0..N-1].
|
---|
476 | If IsUpper = True, then A contains the upper triangle of
|
---|
477 | matrix A^-1, and the elements below the main diagonal are
|
---|
478 | not used nor changed.
|
---|
479 | The same applies if IsUpper = False.
|
---|
480 |
|
---|
481 | Result:
|
---|
482 | True, if the matrix is not singular.
|
---|
483 | False, if the matrix is singular and could not be inverted.
|
---|
484 |
|
---|
485 | -- LAPACK routine (version 3.0) --
|
---|
486 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
487 | Courant Institute, Argonne National Lab, and Rice University
|
---|
488 | March 31, 1993
|
---|
489 | *************************************************************************/
|
---|
490 | public static bool smatrixinverse(ref double[,] a,
|
---|
491 | int n,
|
---|
492 | bool isupper)
|
---|
493 | {
|
---|
494 | bool result = new bool();
|
---|
495 | int[] pivots = new int[0];
|
---|
496 |
|
---|
497 | ldlt.smatrixldlt(ref a, n, isupper, ref pivots);
|
---|
498 | result = smatrixldltinverse(ref a, ref pivots, n, isupper);
|
---|
499 | return result;
|
---|
500 | }
|
---|
501 |
|
---|
502 |
|
---|
503 | public static bool inverseldlt(ref double[,] a,
|
---|
504 | ref int[] pivots,
|
---|
505 | int n,
|
---|
506 | bool isupper)
|
---|
507 | {
|
---|
508 | bool result = new bool();
|
---|
509 | double[] work = new double[0];
|
---|
510 | double[] work2 = new double[0];
|
---|
511 | int i = 0;
|
---|
512 | int k = 0;
|
---|
513 | int kp = 0;
|
---|
514 | int kstep = 0;
|
---|
515 | double ak = 0;
|
---|
516 | double akkp1 = 0;
|
---|
517 | double akp1 = 0;
|
---|
518 | double d = 0;
|
---|
519 | double t = 0;
|
---|
520 | double temp = 0;
|
---|
521 | int km1 = 0;
|
---|
522 | int kp1 = 0;
|
---|
523 | int l = 0;
|
---|
524 | int i1 = 0;
|
---|
525 | int i2 = 0;
|
---|
526 | double v = 0;
|
---|
527 | int i_ = 0;
|
---|
528 | int i1_ = 0;
|
---|
529 |
|
---|
530 | work = new double[n+1];
|
---|
531 | work2 = new double[n+1];
|
---|
532 | result = true;
|
---|
533 |
|
---|
534 | //
|
---|
535 | // Quick return if possible
|
---|
536 | //
|
---|
537 | if( n==0 )
|
---|
538 | {
|
---|
539 | return result;
|
---|
540 | }
|
---|
541 |
|
---|
542 | //
|
---|
543 | // Check that the diagonal matrix D is nonsingular.
|
---|
544 | //
|
---|
545 | for(i=1; i<=n; i++)
|
---|
546 | {
|
---|
547 | if( pivots[i]>0 & (double)(a[i,i])==(double)(0) )
|
---|
548 | {
|
---|
549 | result = false;
|
---|
550 | return result;
|
---|
551 | }
|
---|
552 | }
|
---|
553 | if( isupper )
|
---|
554 | {
|
---|
555 |
|
---|
556 | //
|
---|
557 | // Compute inv(A) from the factorization A = U*D*U'.
|
---|
558 | //
|
---|
559 | // K is the main loop index, increasing from 1 to N in steps of
|
---|
560 | // 1 or 2, depending on the size of the diagonal blocks.
|
---|
561 | //
|
---|
562 | k = 1;
|
---|
563 | while( k<=n )
|
---|
564 | {
|
---|
565 | if( pivots[k]>0 )
|
---|
566 | {
|
---|
567 |
|
---|
568 | //
|
---|
569 | // 1 x 1 diagonal block
|
---|
570 | //
|
---|
571 | // Invert the diagonal block.
|
---|
572 | //
|
---|
573 | a[k,k] = 1/a[k,k];
|
---|
574 |
|
---|
575 | //
|
---|
576 | // Compute column K of the inverse.
|
---|
577 | //
|
---|
578 | if( k>1 )
|
---|
579 | {
|
---|
580 | km1 = k-1;
|
---|
581 | for(i_=1; i_<=km1;i_++)
|
---|
582 | {
|
---|
583 | work[i_] = a[i_,k];
|
---|
584 | }
|
---|
585 | sblas.symmetricmatrixvectormultiply(ref a, isupper, 1, k-1, ref work, -1, ref work2);
|
---|
586 | for(i_=1; i_<=km1;i_++)
|
---|
587 | {
|
---|
588 | a[i_,k] = work2[i_];
|
---|
589 | }
|
---|
590 | v = 0.0;
|
---|
591 | for(i_=1; i_<=km1;i_++)
|
---|
592 | {
|
---|
593 | v += work2[i_]*work[i_];
|
---|
594 | }
|
---|
595 | a[k,k] = a[k,k]-v;
|
---|
596 | }
|
---|
597 | kstep = 1;
|
---|
598 | }
|
---|
599 | else
|
---|
600 | {
|
---|
601 |
|
---|
602 | //
|
---|
603 | // 2 x 2 diagonal block
|
---|
604 | //
|
---|
605 | // Invert the diagonal block.
|
---|
606 | //
|
---|
607 | t = Math.Abs(a[k,k+1]);
|
---|
608 | ak = a[k,k]/t;
|
---|
609 | akp1 = a[k+1,k+1]/t;
|
---|
610 | akkp1 = a[k,k+1]/t;
|
---|
611 | d = t*(ak*akp1-1);
|
---|
612 | a[k,k] = akp1/d;
|
---|
613 | a[k+1,k+1] = ak/d;
|
---|
614 | a[k,k+1] = -(akkp1/d);
|
---|
615 |
|
---|
616 | //
|
---|
617 | // Compute columns K and K+1 of the inverse.
|
---|
618 | //
|
---|
619 | if( k>1 )
|
---|
620 | {
|
---|
621 | km1 = k-1;
|
---|
622 | kp1 = k+1;
|
---|
623 | for(i_=1; i_<=km1;i_++)
|
---|
624 | {
|
---|
625 | work[i_] = a[i_,k];
|
---|
626 | }
|
---|
627 | sblas.symmetricmatrixvectormultiply(ref a, isupper, 1, k-1, ref work, -1, ref work2);
|
---|
628 | for(i_=1; i_<=km1;i_++)
|
---|
629 | {
|
---|
630 | a[i_,k] = work2[i_];
|
---|
631 | }
|
---|
632 | v = 0.0;
|
---|
633 | for(i_=1; i_<=km1;i_++)
|
---|
634 | {
|
---|
635 | v += work[i_]*work2[i_];
|
---|
636 | }
|
---|
637 | a[k,k] = a[k,k]-v;
|
---|
638 | v = 0.0;
|
---|
639 | for(i_=1; i_<=km1;i_++)
|
---|
640 | {
|
---|
641 | v += a[i_,k]*a[i_,kp1];
|
---|
642 | }
|
---|
643 | a[k,k+1] = a[k,k+1]-v;
|
---|
644 | for(i_=1; i_<=km1;i_++)
|
---|
645 | {
|
---|
646 | work[i_] = a[i_,kp1];
|
---|
647 | }
|
---|
648 | sblas.symmetricmatrixvectormultiply(ref a, isupper, 1, k-1, ref work, -1, ref work2);
|
---|
649 | for(i_=1; i_<=km1;i_++)
|
---|
650 | {
|
---|
651 | a[i_,kp1] = work2[i_];
|
---|
652 | }
|
---|
653 | v = 0.0;
|
---|
654 | for(i_=1; i_<=km1;i_++)
|
---|
655 | {
|
---|
656 | v += work[i_]*work2[i_];
|
---|
657 | }
|
---|
658 | a[k+1,k+1] = a[k+1,k+1]-v;
|
---|
659 | }
|
---|
660 | kstep = 2;
|
---|
661 | }
|
---|
662 | kp = Math.Abs(pivots[k]);
|
---|
663 | if( kp!=k )
|
---|
664 | {
|
---|
665 |
|
---|
666 | //
|
---|
667 | // Interchange rows and columns K and KP in the leading
|
---|
668 | // submatrix A(1:k+1,1:k+1)
|
---|
669 | //
|
---|
670 | l = kp-1;
|
---|
671 | for(i_=1; i_<=l;i_++)
|
---|
672 | {
|
---|
673 | work[i_] = a[i_,k];
|
---|
674 | }
|
---|
675 | for(i_=1; i_<=l;i_++)
|
---|
676 | {
|
---|
677 | a[i_,k] = a[i_,kp];
|
---|
678 | }
|
---|
679 | for(i_=1; i_<=l;i_++)
|
---|
680 | {
|
---|
681 | a[i_,kp] = work[i_];
|
---|
682 | }
|
---|
683 | l = k-kp-1;
|
---|
684 | i1 = kp+1;
|
---|
685 | i2 = k-1;
|
---|
686 | i1_ = (i1) - (1);
|
---|
687 | for(i_=1; i_<=l;i_++)
|
---|
688 | {
|
---|
689 | work[i_] = a[i_+i1_,k];
|
---|
690 | }
|
---|
691 | for(i_=i1; i_<=i2;i_++)
|
---|
692 | {
|
---|
693 | a[i_,k] = a[kp,i_];
|
---|
694 | }
|
---|
695 | i1_ = (1) - (i1);
|
---|
696 | for(i_=i1; i_<=i2;i_++)
|
---|
697 | {
|
---|
698 | a[kp,i_] = work[i_+i1_];
|
---|
699 | }
|
---|
700 | temp = a[k,k];
|
---|
701 | a[k,k] = a[kp,kp];
|
---|
702 | a[kp,kp] = temp;
|
---|
703 | if( kstep==2 )
|
---|
704 | {
|
---|
705 | temp = a[k,k+1];
|
---|
706 | a[k,k+1] = a[kp,k+1];
|
---|
707 | a[kp,k+1] = temp;
|
---|
708 | }
|
---|
709 | }
|
---|
710 | k = k+kstep;
|
---|
711 | }
|
---|
712 | }
|
---|
713 | else
|
---|
714 | {
|
---|
715 |
|
---|
716 | //
|
---|
717 | // Compute inv(A) from the factorization A = L*D*L'.
|
---|
718 | //
|
---|
719 | // K is the main loop index, increasing from 1 to N in steps of
|
---|
720 | // 1 or 2, depending on the size of the diagonal blocks.
|
---|
721 | //
|
---|
722 | k = n;
|
---|
723 | while( k>=1 )
|
---|
724 | {
|
---|
725 | if( pivots[k]>0 )
|
---|
726 | {
|
---|
727 |
|
---|
728 | //
|
---|
729 | // 1 x 1 diagonal block
|
---|
730 | //
|
---|
731 | // Invert the diagonal block.
|
---|
732 | //
|
---|
733 | a[k,k] = 1/a[k,k];
|
---|
734 |
|
---|
735 | //
|
---|
736 | // Compute column K of the inverse.
|
---|
737 | //
|
---|
738 | if( k<n )
|
---|
739 | {
|
---|
740 | kp1 = k+1;
|
---|
741 | km1 = k-1;
|
---|
742 | l = n-k;
|
---|
743 | i1_ = (kp1) - (1);
|
---|
744 | for(i_=1; i_<=l;i_++)
|
---|
745 | {
|
---|
746 | work[i_] = a[i_+i1_,k];
|
---|
747 | }
|
---|
748 | sblas.symmetricmatrixvectormultiply(ref a, isupper, k+1, n, ref work, -1, ref work2);
|
---|
749 | i1_ = (1) - (kp1);
|
---|
750 | for(i_=kp1; i_<=n;i_++)
|
---|
751 | {
|
---|
752 | a[i_,k] = work2[i_+i1_];
|
---|
753 | }
|
---|
754 | v = 0.0;
|
---|
755 | for(i_=1; i_<=l;i_++)
|
---|
756 | {
|
---|
757 | v += work[i_]*work2[i_];
|
---|
758 | }
|
---|
759 | a[k,k] = a[k,k]-v;
|
---|
760 | }
|
---|
761 | kstep = 1;
|
---|
762 | }
|
---|
763 | else
|
---|
764 | {
|
---|
765 |
|
---|
766 | //
|
---|
767 | // 2 x 2 diagonal block
|
---|
768 | //
|
---|
769 | // Invert the diagonal block.
|
---|
770 | //
|
---|
771 | t = Math.Abs(a[k,k-1]);
|
---|
772 | ak = a[k-1,k-1]/t;
|
---|
773 | akp1 = a[k,k]/t;
|
---|
774 | akkp1 = a[k,k-1]/t;
|
---|
775 | d = t*(ak*akp1-1);
|
---|
776 | a[k-1,k-1] = akp1/d;
|
---|
777 | a[k,k] = ak/d;
|
---|
778 | a[k,k-1] = -(akkp1/d);
|
---|
779 |
|
---|
780 | //
|
---|
781 | // Compute columns K-1 and K of the inverse.
|
---|
782 | //
|
---|
783 | if( k<n )
|
---|
784 | {
|
---|
785 | kp1 = k+1;
|
---|
786 | km1 = k-1;
|
---|
787 | l = n-k;
|
---|
788 | i1_ = (kp1) - (1);
|
---|
789 | for(i_=1; i_<=l;i_++)
|
---|
790 | {
|
---|
791 | work[i_] = a[i_+i1_,k];
|
---|
792 | }
|
---|
793 | sblas.symmetricmatrixvectormultiply(ref a, isupper, k+1, n, ref work, -1, ref work2);
|
---|
794 | i1_ = (1) - (kp1);
|
---|
795 | for(i_=kp1; i_<=n;i_++)
|
---|
796 | {
|
---|
797 | a[i_,k] = work2[i_+i1_];
|
---|
798 | }
|
---|
799 | v = 0.0;
|
---|
800 | for(i_=1; i_<=l;i_++)
|
---|
801 | {
|
---|
802 | v += work[i_]*work2[i_];
|
---|
803 | }
|
---|
804 | a[k,k] = a[k,k]-v;
|
---|
805 | v = 0.0;
|
---|
806 | for(i_=kp1; i_<=n;i_++)
|
---|
807 | {
|
---|
808 | v += a[i_,k]*a[i_,km1];
|
---|
809 | }
|
---|
810 | a[k,k-1] = a[k,k-1]-v;
|
---|
811 | i1_ = (kp1) - (1);
|
---|
812 | for(i_=1; i_<=l;i_++)
|
---|
813 | {
|
---|
814 | work[i_] = a[i_+i1_,km1];
|
---|
815 | }
|
---|
816 | sblas.symmetricmatrixvectormultiply(ref a, isupper, k+1, n, ref work, -1, ref work2);
|
---|
817 | i1_ = (1) - (kp1);
|
---|
818 | for(i_=kp1; i_<=n;i_++)
|
---|
819 | {
|
---|
820 | a[i_,km1] = work2[i_+i1_];
|
---|
821 | }
|
---|
822 | v = 0.0;
|
---|
823 | for(i_=1; i_<=l;i_++)
|
---|
824 | {
|
---|
825 | v += work[i_]*work2[i_];
|
---|
826 | }
|
---|
827 | a[k-1,k-1] = a[k-1,k-1]-v;
|
---|
828 | }
|
---|
829 | kstep = 2;
|
---|
830 | }
|
---|
831 | kp = Math.Abs(pivots[k]);
|
---|
832 | if( kp!=k )
|
---|
833 | {
|
---|
834 |
|
---|
835 | //
|
---|
836 | // Interchange rows and columns K and KP in the trailing
|
---|
837 | // submatrix A(k-1:n,k-1:n)
|
---|
838 | //
|
---|
839 | if( kp<n )
|
---|
840 | {
|
---|
841 | l = n-kp;
|
---|
842 | kp1 = kp+1;
|
---|
843 | i1_ = (kp1) - (1);
|
---|
844 | for(i_=1; i_<=l;i_++)
|
---|
845 | {
|
---|
846 | work[i_] = a[i_+i1_,k];
|
---|
847 | }
|
---|
848 | for(i_=kp1; i_<=n;i_++)
|
---|
849 | {
|
---|
850 | a[i_,k] = a[i_,kp];
|
---|
851 | }
|
---|
852 | i1_ = (1) - (kp1);
|
---|
853 | for(i_=kp1; i_<=n;i_++)
|
---|
854 | {
|
---|
855 | a[i_,kp] = work[i_+i1_];
|
---|
856 | }
|
---|
857 | }
|
---|
858 | l = kp-k-1;
|
---|
859 | i1 = k+1;
|
---|
860 | i2 = kp-1;
|
---|
861 | i1_ = (i1) - (1);
|
---|
862 | for(i_=1; i_<=l;i_++)
|
---|
863 | {
|
---|
864 | work[i_] = a[i_+i1_,k];
|
---|
865 | }
|
---|
866 | for(i_=i1; i_<=i2;i_++)
|
---|
867 | {
|
---|
868 | a[i_,k] = a[kp,i_];
|
---|
869 | }
|
---|
870 | i1_ = (1) - (i1);
|
---|
871 | for(i_=i1; i_<=i2;i_++)
|
---|
872 | {
|
---|
873 | a[kp,i_] = work[i_+i1_];
|
---|
874 | }
|
---|
875 | temp = a[k,k];
|
---|
876 | a[k,k] = a[kp,kp];
|
---|
877 | a[kp,kp] = temp;
|
---|
878 | if( kstep==2 )
|
---|
879 | {
|
---|
880 | temp = a[k,k-1];
|
---|
881 | a[k,k-1] = a[kp,k-1];
|
---|
882 | a[kp,k-1] = temp;
|
---|
883 | }
|
---|
884 | }
|
---|
885 | k = k-kstep;
|
---|
886 | }
|
---|
887 | }
|
---|
888 | return result;
|
---|
889 | }
|
---|
890 |
|
---|
891 |
|
---|
892 | public static bool inversesymmetricindefinite(ref double[,] a,
|
---|
893 | int n,
|
---|
894 | bool isupper)
|
---|
895 | {
|
---|
896 | bool result = new bool();
|
---|
897 | int[] pivots = new int[0];
|
---|
898 |
|
---|
899 | ldlt.ldltdecomposition(ref a, n, isupper, ref pivots);
|
---|
900 | result = inverseldlt(ref a, ref pivots, n, isupper);
|
---|
901 | return result;
|
---|
902 | }
|
---|
903 | }
|
---|
904 | }
|
---|