1 | /*************************************************************************
|
---|
2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class sevd
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Finding the eigenvalues and eigenvectors of a symmetric matrix
|
---|
29 |
|
---|
30 | The algorithm finds eigen pairs of a symmetric matrix by reducing it to
|
---|
31 | tridiagonal form and using the QL/QR algorithm.
|
---|
32 |
|
---|
33 | Input parameters:
|
---|
34 | A - symmetric matrix which is given by its upper or lower
|
---|
35 | triangular part.
|
---|
36 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
37 | N - size of matrix A.
|
---|
38 | IsUpper - storage format.
|
---|
39 | ZNeeded - flag controlling whether the eigenvectors are needed or not.
|
---|
40 | If ZNeeded is equal to:
|
---|
41 | * 0, the eigenvectors are not returned;
|
---|
42 | * 1, the eigenvectors are returned.
|
---|
43 |
|
---|
44 | Output parameters:
|
---|
45 | D - eigenvalues in ascending order.
|
---|
46 | Array whose index ranges within [0..N-1].
|
---|
47 | Z - if ZNeeded is equal to:
|
---|
48 | * 0, Z hasnt changed;
|
---|
49 | * 1, Z contains the eigenvectors.
|
---|
50 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
51 | The eigenvectors are stored in the matrix columns.
|
---|
52 |
|
---|
53 | Result:
|
---|
54 | True, if the algorithm has converged.
|
---|
55 | False, if the algorithm hasn't converged (rare case).
|
---|
56 |
|
---|
57 | -- ALGLIB --
|
---|
58 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
59 | *************************************************************************/
|
---|
60 | public static bool smatrixevd(double[,] a,
|
---|
61 | int n,
|
---|
62 | int zneeded,
|
---|
63 | bool isupper,
|
---|
64 | ref double[] d,
|
---|
65 | ref double[,] z)
|
---|
66 | {
|
---|
67 | bool result = new bool();
|
---|
68 | double[] tau = new double[0];
|
---|
69 | double[] e = new double[0];
|
---|
70 |
|
---|
71 | a = (double[,])a.Clone();
|
---|
72 |
|
---|
73 | System.Diagnostics.Debug.Assert(zneeded==0 | zneeded==1, "SMatrixEVD: incorrect ZNeeded");
|
---|
74 | tridiagonal.smatrixtd(ref a, n, isupper, ref tau, ref d, ref e);
|
---|
75 | if( zneeded==1 )
|
---|
76 | {
|
---|
77 | tridiagonal.smatrixtdunpackq(ref a, n, isupper, ref tau, ref z);
|
---|
78 | }
|
---|
79 | result = tdevd.smatrixtdevd(ref d, e, n, zneeded, ref z);
|
---|
80 | return result;
|
---|
81 | }
|
---|
82 |
|
---|
83 |
|
---|
84 | public static bool symmetricevd(double[,] a,
|
---|
85 | int n,
|
---|
86 | int zneeded,
|
---|
87 | bool isupper,
|
---|
88 | ref double[] d,
|
---|
89 | ref double[,] z)
|
---|
90 | {
|
---|
91 | bool result = new bool();
|
---|
92 | double[] tau = new double[0];
|
---|
93 | double[] e = new double[0];
|
---|
94 |
|
---|
95 | a = (double[,])a.Clone();
|
---|
96 |
|
---|
97 | System.Diagnostics.Debug.Assert(zneeded==0 | zneeded==1, "SymmetricEVD: incorrect ZNeeded");
|
---|
98 | tridiagonal.totridiagonal(ref a, n, isupper, ref tau, ref d, ref e);
|
---|
99 | if( zneeded==1 )
|
---|
100 | {
|
---|
101 | tridiagonal.unpackqfromtridiagonal(ref a, n, isupper, ref tau, ref z);
|
---|
102 | }
|
---|
103 | result = tdevd.tridiagonalevd(ref d, e, n, zneeded, ref z);
|
---|
104 | return result;
|
---|
105 | }
|
---|
106 | }
|
---|
107 | }
|
---|