1 | /*************************************************************************
|
---|
2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class sdet
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Determinant calculation of the matrix given by LDLT decomposition.
|
---|
29 |
|
---|
30 | Input parameters:
|
---|
31 | A - LDLT-decomposition of the matrix,
|
---|
32 | output of subroutine SMatrixLDLT.
|
---|
33 | Pivots - table of permutations which were made during
|
---|
34 | LDLT decomposition, output of subroutine SMatrixLDLT.
|
---|
35 | N - size of matrix A.
|
---|
36 | IsUpper - matrix storage format. The value is equal to the input
|
---|
37 | parameter of subroutine SMatrixLDLT.
|
---|
38 |
|
---|
39 | Result:
|
---|
40 | matrix determinant.
|
---|
41 |
|
---|
42 | -- ALGLIB --
|
---|
43 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
44 | *************************************************************************/
|
---|
45 | public static double smatrixldltdet(ref double[,] a,
|
---|
46 | ref int[] pivots,
|
---|
47 | int n,
|
---|
48 | bool isupper)
|
---|
49 | {
|
---|
50 | double result = 0;
|
---|
51 | int k = 0;
|
---|
52 |
|
---|
53 | result = 1;
|
---|
54 | if( isupper )
|
---|
55 | {
|
---|
56 | k = 0;
|
---|
57 | while( k<n )
|
---|
58 | {
|
---|
59 | if( pivots[k]>=0 )
|
---|
60 | {
|
---|
61 | result = result*a[k,k];
|
---|
62 | k = k+1;
|
---|
63 | }
|
---|
64 | else
|
---|
65 | {
|
---|
66 | result = result*(a[k,k]*a[k+1,k+1]-a[k,k+1]*a[k,k+1]);
|
---|
67 | k = k+2;
|
---|
68 | }
|
---|
69 | }
|
---|
70 | }
|
---|
71 | else
|
---|
72 | {
|
---|
73 | k = n-1;
|
---|
74 | while( k>=0 )
|
---|
75 | {
|
---|
76 | if( pivots[k]>=0 )
|
---|
77 | {
|
---|
78 | result = result*a[k,k];
|
---|
79 | k = k-1;
|
---|
80 | }
|
---|
81 | else
|
---|
82 | {
|
---|
83 | result = result*(a[k-1,k-1]*a[k,k]-a[k,k-1]*a[k,k-1]);
|
---|
84 | k = k-2;
|
---|
85 | }
|
---|
86 | }
|
---|
87 | }
|
---|
88 | return result;
|
---|
89 | }
|
---|
90 |
|
---|
91 |
|
---|
92 | /*************************************************************************
|
---|
93 | Determinant calculation of the symmetric matrix
|
---|
94 |
|
---|
95 | Input parameters:
|
---|
96 | A - matrix. Array with elements [0..N-1, 0..N-1].
|
---|
97 | N - size of matrix A.
|
---|
98 | IsUpper - if IsUpper = True, then symmetric matrix A is given by its
|
---|
99 | upper triangle, and the lower triangle isnt used by
|
---|
100 | subroutine. Similarly, if IsUpper = False, then A is given
|
---|
101 | by its lower triangle.
|
---|
102 |
|
---|
103 | Result:
|
---|
104 | determinant of matrix A.
|
---|
105 |
|
---|
106 | -- ALGLIB --
|
---|
107 | Copyright 2005-2008 by Bochkanov Sergey
|
---|
108 | *************************************************************************/
|
---|
109 | public static double smatrixdet(double[,] a,
|
---|
110 | int n,
|
---|
111 | bool isupper)
|
---|
112 | {
|
---|
113 | double result = 0;
|
---|
114 | int[] pivots = new int[0];
|
---|
115 |
|
---|
116 | a = (double[,])a.Clone();
|
---|
117 |
|
---|
118 | ldlt.smatrixldlt(ref a, n, isupper, ref pivots);
|
---|
119 | result = smatrixldltdet(ref a, ref pivots, n, isupper);
|
---|
120 | return result;
|
---|
121 | }
|
---|
122 |
|
---|
123 |
|
---|
124 | public static double determinantldlt(ref double[,] a,
|
---|
125 | ref int[] pivots,
|
---|
126 | int n,
|
---|
127 | bool isupper)
|
---|
128 | {
|
---|
129 | double result = 0;
|
---|
130 | int k = 0;
|
---|
131 |
|
---|
132 | result = 1;
|
---|
133 | if( isupper )
|
---|
134 | {
|
---|
135 | k = 1;
|
---|
136 | while( k<=n )
|
---|
137 | {
|
---|
138 | if( pivots[k]>0 )
|
---|
139 | {
|
---|
140 | result = result*a[k,k];
|
---|
141 | k = k+1;
|
---|
142 | }
|
---|
143 | else
|
---|
144 | {
|
---|
145 | result = result*(a[k,k]*a[k+1,k+1]-a[k,k+1]*a[k,k+1]);
|
---|
146 | k = k+2;
|
---|
147 | }
|
---|
148 | }
|
---|
149 | }
|
---|
150 | else
|
---|
151 | {
|
---|
152 | k = n;
|
---|
153 | while( k>=1 )
|
---|
154 | {
|
---|
155 | if( pivots[k]>0 )
|
---|
156 | {
|
---|
157 | result = result*a[k,k];
|
---|
158 | k = k-1;
|
---|
159 | }
|
---|
160 | else
|
---|
161 | {
|
---|
162 | result = result*(a[k-1,k-1]*a[k,k]-a[k,k-1]*a[k,k-1]);
|
---|
163 | k = k-2;
|
---|
164 | }
|
---|
165 | }
|
---|
166 | }
|
---|
167 | return result;
|
---|
168 | }
|
---|
169 |
|
---|
170 |
|
---|
171 | public static double determinantsymmetric(double[,] a,
|
---|
172 | int n,
|
---|
173 | bool isupper)
|
---|
174 | {
|
---|
175 | double result = 0;
|
---|
176 | int[] pivots = new int[0];
|
---|
177 |
|
---|
178 | a = (double[,])a.Clone();
|
---|
179 |
|
---|
180 | ldlt.ldltdecomposition(ref a, n, isupper, ref pivots);
|
---|
181 | result = determinantldlt(ref a, ref pivots, n, isupper);
|
---|
182 | return result;
|
---|
183 | }
|
---|
184 | }
|
---|
185 | }
|
---|