1 | /*************************************************************************
|
---|
2 | Copyright 2009 by Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class odesolver
|
---|
26 | {
|
---|
27 | public struct odesolverstate
|
---|
28 | {
|
---|
29 | public int n;
|
---|
30 | public int m;
|
---|
31 | public double xscale;
|
---|
32 | public double h;
|
---|
33 | public double eps;
|
---|
34 | public bool fraceps;
|
---|
35 | public double[] yc;
|
---|
36 | public double[] escale;
|
---|
37 | public double[] xg;
|
---|
38 | public int solvertype;
|
---|
39 | public double x;
|
---|
40 | public double[] y;
|
---|
41 | public double[] dy;
|
---|
42 | public double[,] ytbl;
|
---|
43 | public int repterminationtype;
|
---|
44 | public int repnfev;
|
---|
45 | public double[] yn;
|
---|
46 | public double[] yns;
|
---|
47 | public double[] rka;
|
---|
48 | public double[] rkc;
|
---|
49 | public double[] rkcs;
|
---|
50 | public double[,] rkb;
|
---|
51 | public double[,] rkk;
|
---|
52 | public AP.rcommstate rstate;
|
---|
53 | };
|
---|
54 |
|
---|
55 |
|
---|
56 | public struct odesolverreport
|
---|
57 | {
|
---|
58 | public int nfev;
|
---|
59 | public int terminationtype;
|
---|
60 | };
|
---|
61 |
|
---|
62 |
|
---|
63 |
|
---|
64 |
|
---|
65 | public const double odesolvermaxgrow = 3.0;
|
---|
66 | public const double odesolvermaxshrink = 10.0;
|
---|
67 |
|
---|
68 |
|
---|
69 | /*************************************************************************
|
---|
70 | Cash-Karp adaptive ODE solver.
|
---|
71 |
|
---|
72 | This subroutine solves ODE Y'=f(Y,x) with initial conditions Y(xs)=Ys
|
---|
73 | (here Y may be single variable or vector of N variables).
|
---|
74 |
|
---|
75 | INPUT PARAMETERS:
|
---|
76 | Y - initial conditions, array[0..N-1].
|
---|
77 | contains values of Y[] at X[0]
|
---|
78 | N - system size
|
---|
79 | X - points at which Y should be tabulated, array[0..M-1]
|
---|
80 | integrations starts at X[0], ends at X[M-1], intermediate
|
---|
81 | values at X[i] are returned too.
|
---|
82 | SHOULD BE ORDERED BY ASCENDING OR BY DESCENDING!!!!
|
---|
83 | M - number of intermediate points + first point + last point:
|
---|
84 | * M>2 means that you need both Y(X[M-1]) and M-2 values at
|
---|
85 | intermediate points
|
---|
86 | * M=2 means that you want just to integrate from X[0] to
|
---|
87 | X[1] and don't interested in intermediate values.
|
---|
88 | * M=1 means that you don't want to integrate :)
|
---|
89 | it is degenerate case, but it will be handled correctly.
|
---|
90 | * M<1 means error
|
---|
91 | Eps - tolerance (absolute/relative error on each step will be
|
---|
92 | less than Eps). When passing:
|
---|
93 | * Eps>0, it means desired ABSOLUTE error
|
---|
94 | * Eps<0, it means desired RELATIVE error. Relative errors
|
---|
95 | are calculated with respect to maximum values of Y seen
|
---|
96 | so far. Be careful to use this criterion when starting
|
---|
97 | from Y[] that are close to zero.
|
---|
98 | H - initial step lenth, it will be adjusted automatically
|
---|
99 | after the first step. If H=0, step will be selected
|
---|
100 | automatically (usualy it will be equal to 0.001 of
|
---|
101 | min(x[i]-x[j])).
|
---|
102 |
|
---|
103 | OUTPUT PARAMETERS
|
---|
104 | State - structure which stores algorithm state between subsequent
|
---|
105 | calls of OdeSolverIteration. Used for reverse communication.
|
---|
106 | This structure should be passed to the OdeSolverIteration
|
---|
107 | subroutine.
|
---|
108 |
|
---|
109 | SEE ALSO
|
---|
110 | AutoGKSmoothW, AutoGKSingular, AutoGKIteration, AutoGKResults.
|
---|
111 |
|
---|
112 |
|
---|
113 | -- ALGLIB --
|
---|
114 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
115 | *************************************************************************/
|
---|
116 | public static void odesolverrkck(ref double[] y,
|
---|
117 | int n,
|
---|
118 | ref double[] x,
|
---|
119 | int m,
|
---|
120 | double eps,
|
---|
121 | double h,
|
---|
122 | ref odesolverstate state)
|
---|
123 | {
|
---|
124 | odesolverinit(0, ref y, n, ref x, m, eps, h, ref state);
|
---|
125 | }
|
---|
126 |
|
---|
127 |
|
---|
128 | /*************************************************************************
|
---|
129 | One iteration of ODE solver.
|
---|
130 |
|
---|
131 | Called after inialization of State structure with OdeSolverXXX subroutine.
|
---|
132 | See HTML docs for examples.
|
---|
133 |
|
---|
134 | INPUT PARAMETERS:
|
---|
135 | State - structure which stores algorithm state between subsequent
|
---|
136 | calls and which is used for reverse communication. Must be
|
---|
137 | initialized with OdeSolverXXX() call first.
|
---|
138 |
|
---|
139 | If subroutine returned False, algorithm have finished its work.
|
---|
140 | If subroutine returned True, then user should:
|
---|
141 | * calculate F(State.X, State.Y)
|
---|
142 | * store it in State.DY
|
---|
143 | Here State.X is real, State.Y and State.DY are arrays[0..N-1] of reals.
|
---|
144 |
|
---|
145 | -- ALGLIB --
|
---|
146 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
147 | *************************************************************************/
|
---|
148 | public static bool odesolveriteration(ref odesolverstate state)
|
---|
149 | {
|
---|
150 | bool result = new bool();
|
---|
151 | int n = 0;
|
---|
152 | int m = 0;
|
---|
153 | int i = 0;
|
---|
154 | int j = 0;
|
---|
155 | int k = 0;
|
---|
156 | double xc = 0;
|
---|
157 | double v = 0;
|
---|
158 | double h = 0;
|
---|
159 | double h2 = 0;
|
---|
160 | bool gridpoint = new bool();
|
---|
161 | double err = 0;
|
---|
162 | double maxgrowpow = 0;
|
---|
163 | int klimit = 0;
|
---|
164 | int i_ = 0;
|
---|
165 |
|
---|
166 |
|
---|
167 | //
|
---|
168 | // Reverse communication preparations
|
---|
169 | // I know it looks ugly, but it works the same way
|
---|
170 | // anywhere from C++ to Python.
|
---|
171 | //
|
---|
172 | // This code initializes locals by:
|
---|
173 | // * random values determined during code
|
---|
174 | // generation - on first subroutine call
|
---|
175 | // * values from previous call - on subsequent calls
|
---|
176 | //
|
---|
177 | if( state.rstate.stage>=0 )
|
---|
178 | {
|
---|
179 | n = state.rstate.ia[0];
|
---|
180 | m = state.rstate.ia[1];
|
---|
181 | i = state.rstate.ia[2];
|
---|
182 | j = state.rstate.ia[3];
|
---|
183 | k = state.rstate.ia[4];
|
---|
184 | klimit = state.rstate.ia[5];
|
---|
185 | gridpoint = state.rstate.ba[0];
|
---|
186 | xc = state.rstate.ra[0];
|
---|
187 | v = state.rstate.ra[1];
|
---|
188 | h = state.rstate.ra[2];
|
---|
189 | h2 = state.rstate.ra[3];
|
---|
190 | err = state.rstate.ra[4];
|
---|
191 | maxgrowpow = state.rstate.ra[5];
|
---|
192 | }
|
---|
193 | else
|
---|
194 | {
|
---|
195 | n = -983;
|
---|
196 | m = -989;
|
---|
197 | i = -834;
|
---|
198 | j = 900;
|
---|
199 | k = -287;
|
---|
200 | klimit = 364;
|
---|
201 | gridpoint = false;
|
---|
202 | xc = -338;
|
---|
203 | v = -686;
|
---|
204 | h = 912;
|
---|
205 | h2 = 585;
|
---|
206 | err = 497;
|
---|
207 | maxgrowpow = -271;
|
---|
208 | }
|
---|
209 | if( state.rstate.stage==0 )
|
---|
210 | {
|
---|
211 | goto lbl_0;
|
---|
212 | }
|
---|
213 |
|
---|
214 | //
|
---|
215 | // Routine body
|
---|
216 | //
|
---|
217 |
|
---|
218 | //
|
---|
219 | // prepare
|
---|
220 | //
|
---|
221 | if( state.repterminationtype!=0 )
|
---|
222 | {
|
---|
223 | result = false;
|
---|
224 | return result;
|
---|
225 | }
|
---|
226 | n = state.n;
|
---|
227 | m = state.m;
|
---|
228 | h = state.h;
|
---|
229 | state.y = new double[n];
|
---|
230 | state.dy = new double[n];
|
---|
231 | maxgrowpow = Math.Pow(odesolvermaxgrow, 5);
|
---|
232 | state.repnfev = 0;
|
---|
233 |
|
---|
234 | //
|
---|
235 | // some preliminary checks for internal errors
|
---|
236 | // after this we assume that H>0 and M>1
|
---|
237 | //
|
---|
238 | System.Diagnostics.Debug.Assert((double)(state.h)>(double)(0), "ODESolver: internal error");
|
---|
239 | System.Diagnostics.Debug.Assert(m>1, "ODESolverIteration: internal error");
|
---|
240 |
|
---|
241 | //
|
---|
242 | // choose solver
|
---|
243 | //
|
---|
244 | if( state.solvertype!=0 )
|
---|
245 | {
|
---|
246 | goto lbl_1;
|
---|
247 | }
|
---|
248 |
|
---|
249 | //
|
---|
250 | // Cask-Karp solver
|
---|
251 | // Prepare coefficients table.
|
---|
252 | // Check it for errors
|
---|
253 | //
|
---|
254 | state.rka = new double[6];
|
---|
255 | state.rka[0] = 0;
|
---|
256 | state.rka[1] = (double)(1)/(double)(5);
|
---|
257 | state.rka[2] = (double)(3)/(double)(10);
|
---|
258 | state.rka[3] = (double)(3)/(double)(5);
|
---|
259 | state.rka[4] = 1;
|
---|
260 | state.rka[5] = (double)(7)/(double)(8);
|
---|
261 | state.rkb = new double[6, 5];
|
---|
262 | state.rkb[1,0] = (double)(1)/(double)(5);
|
---|
263 | state.rkb[2,0] = (double)(3)/(double)(40);
|
---|
264 | state.rkb[2,1] = (double)(9)/(double)(40);
|
---|
265 | state.rkb[3,0] = (double)(3)/(double)(10);
|
---|
266 | state.rkb[3,1] = -((double)(9)/(double)(10));
|
---|
267 | state.rkb[3,2] = (double)(6)/(double)(5);
|
---|
268 | state.rkb[4,0] = -((double)(11)/(double)(54));
|
---|
269 | state.rkb[4,1] = (double)(5)/(double)(2);
|
---|
270 | state.rkb[4,2] = -((double)(70)/(double)(27));
|
---|
271 | state.rkb[4,3] = (double)(35)/(double)(27);
|
---|
272 | state.rkb[5,0] = (double)(1631)/(double)(55296);
|
---|
273 | state.rkb[5,1] = (double)(175)/(double)(512);
|
---|
274 | state.rkb[5,2] = (double)(575)/(double)(13824);
|
---|
275 | state.rkb[5,3] = (double)(44275)/(double)(110592);
|
---|
276 | state.rkb[5,4] = (double)(253)/(double)(4096);
|
---|
277 | state.rkc = new double[6];
|
---|
278 | state.rkc[0] = (double)(37)/(double)(378);
|
---|
279 | state.rkc[1] = 0;
|
---|
280 | state.rkc[2] = (double)(250)/(double)(621);
|
---|
281 | state.rkc[3] = (double)(125)/(double)(594);
|
---|
282 | state.rkc[4] = 0;
|
---|
283 | state.rkc[5] = (double)(512)/(double)(1771);
|
---|
284 | state.rkcs = new double[6];
|
---|
285 | state.rkcs[0] = (double)(2825)/(double)(27648);
|
---|
286 | state.rkcs[1] = 0;
|
---|
287 | state.rkcs[2] = (double)(18575)/(double)(48384);
|
---|
288 | state.rkcs[3] = (double)(13525)/(double)(55296);
|
---|
289 | state.rkcs[4] = (double)(277)/(double)(14336);
|
---|
290 | state.rkcs[5] = (double)(1)/(double)(4);
|
---|
291 | state.rkk = new double[6, n];
|
---|
292 |
|
---|
293 | //
|
---|
294 | // Main cycle consists of two iterations:
|
---|
295 | // * outer where we travel from X[i-1] to X[i]
|
---|
296 | // * inner where we travel inside [X[i-1],X[i]]
|
---|
297 | //
|
---|
298 | state.ytbl = new double[m, n];
|
---|
299 | state.escale = new double[n];
|
---|
300 | state.yn = new double[n];
|
---|
301 | state.yns = new double[n];
|
---|
302 | xc = state.xg[0];
|
---|
303 | for(i_=0; i_<=n-1;i_++)
|
---|
304 | {
|
---|
305 | state.ytbl[0,i_] = state.yc[i_];
|
---|
306 | }
|
---|
307 | for(j=0; j<=n-1; j++)
|
---|
308 | {
|
---|
309 | state.escale[j] = 0;
|
---|
310 | }
|
---|
311 | i = 1;
|
---|
312 | lbl_3:
|
---|
313 | if( i>m-1 )
|
---|
314 | {
|
---|
315 | goto lbl_5;
|
---|
316 | }
|
---|
317 |
|
---|
318 | //
|
---|
319 | // begin inner iteration
|
---|
320 | //
|
---|
321 | lbl_6:
|
---|
322 | if( false )
|
---|
323 | {
|
---|
324 | goto lbl_7;
|
---|
325 | }
|
---|
326 |
|
---|
327 | //
|
---|
328 | // truncate step if needed (beyond right boundary).
|
---|
329 | // determine should we store X or not
|
---|
330 | //
|
---|
331 | if( (double)(xc+h)>=(double)(state.xg[i]) )
|
---|
332 | {
|
---|
333 | h = state.xg[i]-xc;
|
---|
334 | gridpoint = true;
|
---|
335 | }
|
---|
336 | else
|
---|
337 | {
|
---|
338 | gridpoint = false;
|
---|
339 | }
|
---|
340 |
|
---|
341 | //
|
---|
342 | // Update error scale maximums
|
---|
343 | //
|
---|
344 | // These maximums are initialized by zeros,
|
---|
345 | // then updated every iterations.
|
---|
346 | //
|
---|
347 | for(j=0; j<=n-1; j++)
|
---|
348 | {
|
---|
349 | state.escale[j] = Math.Max(state.escale[j], Math.Abs(state.yc[j]));
|
---|
350 | }
|
---|
351 |
|
---|
352 | //
|
---|
353 | // make one step:
|
---|
354 | // 1. calculate all info needed to do step
|
---|
355 | // 2. update errors scale maximums using values/derivatives
|
---|
356 | // obtained during (1)
|
---|
357 | //
|
---|
358 | // Take into account that we use scaling of X to reduce task
|
---|
359 | // to the form where x[0] < x[1] < ... < x[n-1]. So X is
|
---|
360 | // replaced by x=xscale*t, and dy/dx=f(y,x) is replaced
|
---|
361 | // by dy/dt=xscale*f(y,xscale*t).
|
---|
362 | //
|
---|
363 | for(i_=0; i_<=n-1;i_++)
|
---|
364 | {
|
---|
365 | state.yn[i_] = state.yc[i_];
|
---|
366 | }
|
---|
367 | for(i_=0; i_<=n-1;i_++)
|
---|
368 | {
|
---|
369 | state.yns[i_] = state.yc[i_];
|
---|
370 | }
|
---|
371 | k = 0;
|
---|
372 | lbl_8:
|
---|
373 | if( k>5 )
|
---|
374 | {
|
---|
375 | goto lbl_10;
|
---|
376 | }
|
---|
377 |
|
---|
378 | //
|
---|
379 | // prepare data for the next update of YN/YNS
|
---|
380 | //
|
---|
381 | state.x = state.xscale*(xc+state.rka[k]*h);
|
---|
382 | for(i_=0; i_<=n-1;i_++)
|
---|
383 | {
|
---|
384 | state.y[i_] = state.yc[i_];
|
---|
385 | }
|
---|
386 | for(j=0; j<=k-1; j++)
|
---|
387 | {
|
---|
388 | v = state.rkb[k,j];
|
---|
389 | for(i_=0; i_<=n-1;i_++)
|
---|
390 | {
|
---|
391 | state.y[i_] = state.y[i_] + v*state.rkk[j,i_];
|
---|
392 | }
|
---|
393 | }
|
---|
394 | state.rstate.stage = 0;
|
---|
395 | goto lbl_rcomm;
|
---|
396 | lbl_0:
|
---|
397 | state.repnfev = state.repnfev+1;
|
---|
398 | v = h*state.xscale;
|
---|
399 | for(i_=0; i_<=n-1;i_++)
|
---|
400 | {
|
---|
401 | state.rkk[k,i_] = v*state.dy[i_];
|
---|
402 | }
|
---|
403 |
|
---|
404 | //
|
---|
405 | // update YN/YNS
|
---|
406 | //
|
---|
407 | v = state.rkc[k];
|
---|
408 | for(i_=0; i_<=n-1;i_++)
|
---|
409 | {
|
---|
410 | state.yn[i_] = state.yn[i_] + v*state.rkk[k,i_];
|
---|
411 | }
|
---|
412 | v = state.rkcs[k];
|
---|
413 | for(i_=0; i_<=n-1;i_++)
|
---|
414 | {
|
---|
415 | state.yns[i_] = state.yns[i_] + v*state.rkk[k,i_];
|
---|
416 | }
|
---|
417 | k = k+1;
|
---|
418 | goto lbl_8;
|
---|
419 | lbl_10:
|
---|
420 |
|
---|
421 | //
|
---|
422 | // estimate error
|
---|
423 | //
|
---|
424 | err = 0;
|
---|
425 | for(j=0; j<=n-1; j++)
|
---|
426 | {
|
---|
427 | if( !state.fraceps )
|
---|
428 | {
|
---|
429 |
|
---|
430 | //
|
---|
431 | // absolute error is estimated
|
---|
432 | //
|
---|
433 | err = Math.Max(err, Math.Abs(state.yn[j]-state.yns[j]));
|
---|
434 | }
|
---|
435 | else
|
---|
436 | {
|
---|
437 |
|
---|
438 | //
|
---|
439 | // Relative error is estimated
|
---|
440 | //
|
---|
441 | v = state.escale[j];
|
---|
442 | if( (double)(v)==(double)(0) )
|
---|
443 | {
|
---|
444 | v = 1;
|
---|
445 | }
|
---|
446 | err = Math.Max(err, Math.Abs(state.yn[j]-state.yns[j])/v);
|
---|
447 | }
|
---|
448 | }
|
---|
449 |
|
---|
450 | //
|
---|
451 | // calculate new step, restart if necessary
|
---|
452 | //
|
---|
453 | if( (double)(maxgrowpow*err)<=(double)(state.eps) )
|
---|
454 | {
|
---|
455 | h2 = odesolvermaxgrow*h;
|
---|
456 | }
|
---|
457 | else
|
---|
458 | {
|
---|
459 | h2 = h*Math.Pow(state.eps/err, 0.2);
|
---|
460 | }
|
---|
461 | if( (double)(h2)<(double)(h/odesolvermaxshrink) )
|
---|
462 | {
|
---|
463 | h2 = h/odesolvermaxshrink;
|
---|
464 | }
|
---|
465 | if( (double)(err)>(double)(state.eps) )
|
---|
466 | {
|
---|
467 | h = h2;
|
---|
468 | goto lbl_6;
|
---|
469 | }
|
---|
470 |
|
---|
471 | //
|
---|
472 | // advance position
|
---|
473 | //
|
---|
474 | xc = xc+h;
|
---|
475 | for(i_=0; i_<=n-1;i_++)
|
---|
476 | {
|
---|
477 | state.yc[i_] = state.yn[i_];
|
---|
478 | }
|
---|
479 |
|
---|
480 | //
|
---|
481 | // update H
|
---|
482 | //
|
---|
483 | h = h2;
|
---|
484 |
|
---|
485 | //
|
---|
486 | // break on grid point
|
---|
487 | //
|
---|
488 | if( gridpoint )
|
---|
489 | {
|
---|
490 | goto lbl_7;
|
---|
491 | }
|
---|
492 | goto lbl_6;
|
---|
493 | lbl_7:
|
---|
494 |
|
---|
495 | //
|
---|
496 | // save result
|
---|
497 | //
|
---|
498 | for(i_=0; i_<=n-1;i_++)
|
---|
499 | {
|
---|
500 | state.ytbl[i,i_] = state.yc[i_];
|
---|
501 | }
|
---|
502 | i = i+1;
|
---|
503 | goto lbl_3;
|
---|
504 | lbl_5:
|
---|
505 | state.repterminationtype = 1;
|
---|
506 | result = false;
|
---|
507 | return result;
|
---|
508 | lbl_1:
|
---|
509 | result = false;
|
---|
510 | return result;
|
---|
511 |
|
---|
512 | //
|
---|
513 | // Saving state
|
---|
514 | //
|
---|
515 | lbl_rcomm:
|
---|
516 | result = true;
|
---|
517 | state.rstate.ia[0] = n;
|
---|
518 | state.rstate.ia[1] = m;
|
---|
519 | state.rstate.ia[2] = i;
|
---|
520 | state.rstate.ia[3] = j;
|
---|
521 | state.rstate.ia[4] = k;
|
---|
522 | state.rstate.ia[5] = klimit;
|
---|
523 | state.rstate.ba[0] = gridpoint;
|
---|
524 | state.rstate.ra[0] = xc;
|
---|
525 | state.rstate.ra[1] = v;
|
---|
526 | state.rstate.ra[2] = h;
|
---|
527 | state.rstate.ra[3] = h2;
|
---|
528 | state.rstate.ra[4] = err;
|
---|
529 | state.rstate.ra[5] = maxgrowpow;
|
---|
530 | return result;
|
---|
531 | }
|
---|
532 |
|
---|
533 |
|
---|
534 | /*************************************************************************
|
---|
535 | ODE solver results
|
---|
536 |
|
---|
537 | Called after OdeSolverIteration returned False.
|
---|
538 |
|
---|
539 | INPUT PARAMETERS:
|
---|
540 | State - algorithm state (used by OdeSolverIteration).
|
---|
541 |
|
---|
542 | OUTPUT PARAMETERS:
|
---|
543 | M - number of tabulated values, M>=1
|
---|
544 | XTbl - array[0..M-1], values of X
|
---|
545 | YTbl - array[0..M-1,0..N-1], values of Y in X[i]
|
---|
546 | Rep - solver report:
|
---|
547 | * Rep.TerminationType completetion code:
|
---|
548 | * -2 X is not ordered by ascending/descending or
|
---|
549 | there are non-distinct X[], i.e. X[i]=X[i+1]
|
---|
550 | * -1 incorrect parameters were specified
|
---|
551 | * 1 task has been solved
|
---|
552 | * Rep.NFEV contains number of function calculations
|
---|
553 |
|
---|
554 | -- ALGLIB --
|
---|
555 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
556 | *************************************************************************/
|
---|
557 | public static void odesolverresults(ref odesolverstate state,
|
---|
558 | ref int m,
|
---|
559 | ref double[] xtbl,
|
---|
560 | ref double[,] ytbl,
|
---|
561 | ref odesolverreport rep)
|
---|
562 | {
|
---|
563 | double v = 0;
|
---|
564 | int i = 0;
|
---|
565 | int i_ = 0;
|
---|
566 |
|
---|
567 | rep.terminationtype = state.repterminationtype;
|
---|
568 | if( rep.terminationtype>0 )
|
---|
569 | {
|
---|
570 | m = state.m;
|
---|
571 | rep.nfev = state.repnfev;
|
---|
572 | xtbl = new double[state.m];
|
---|
573 | v = state.xscale;
|
---|
574 | for(i_=0; i_<=state.m-1;i_++)
|
---|
575 | {
|
---|
576 | xtbl[i_] = v*state.xg[i_];
|
---|
577 | }
|
---|
578 | ytbl = new double[state.m, state.n];
|
---|
579 | for(i=0; i<=state.m-1; i++)
|
---|
580 | {
|
---|
581 | for(i_=0; i_<=state.n-1;i_++)
|
---|
582 | {
|
---|
583 | ytbl[i,i_] = state.ytbl[i,i_];
|
---|
584 | }
|
---|
585 | }
|
---|
586 | }
|
---|
587 | else
|
---|
588 | {
|
---|
589 | rep.nfev = 0;
|
---|
590 | }
|
---|
591 | }
|
---|
592 |
|
---|
593 |
|
---|
594 | /*************************************************************************
|
---|
595 | Internal initialization subroutine
|
---|
596 | *************************************************************************/
|
---|
597 | private static void odesolverinit(int solvertype,
|
---|
598 | ref double[] y,
|
---|
599 | int n,
|
---|
600 | ref double[] x,
|
---|
601 | int m,
|
---|
602 | double eps,
|
---|
603 | double h,
|
---|
604 | ref odesolverstate state)
|
---|
605 | {
|
---|
606 | int i = 0;
|
---|
607 | double v = 0;
|
---|
608 | int i_ = 0;
|
---|
609 |
|
---|
610 |
|
---|
611 | //
|
---|
612 | // Prepare RComm
|
---|
613 | //
|
---|
614 | state.rstate.ia = new int[5+1];
|
---|
615 | state.rstate.ba = new bool[0+1];
|
---|
616 | state.rstate.ra = new double[5+1];
|
---|
617 | state.rstate.stage = -1;
|
---|
618 |
|
---|
619 | //
|
---|
620 | // check parameters.
|
---|
621 | //
|
---|
622 | if( n<=0 | m<1 | (double)(eps)==(double)(0) )
|
---|
623 | {
|
---|
624 | state.repterminationtype = -1;
|
---|
625 | return;
|
---|
626 | }
|
---|
627 | if( (double)(h)<(double)(0) )
|
---|
628 | {
|
---|
629 | h = -h;
|
---|
630 | }
|
---|
631 |
|
---|
632 | //
|
---|
633 | // quick exit if necessary.
|
---|
634 | // after this block we assume that M>1
|
---|
635 | //
|
---|
636 | if( m==1 )
|
---|
637 | {
|
---|
638 | state.repnfev = 0;
|
---|
639 | state.repterminationtype = 1;
|
---|
640 | state.ytbl = new double[1, n];
|
---|
641 | for(i_=0; i_<=n-1;i_++)
|
---|
642 | {
|
---|
643 | state.ytbl[0,i_] = y[i_];
|
---|
644 | }
|
---|
645 | state.xg = new double[m];
|
---|
646 | for(i_=0; i_<=m-1;i_++)
|
---|
647 | {
|
---|
648 | state.xg[i_] = x[i_];
|
---|
649 | }
|
---|
650 | return;
|
---|
651 | }
|
---|
652 |
|
---|
653 | //
|
---|
654 | // check again: correct order of X[]
|
---|
655 | //
|
---|
656 | if( (double)(x[1])==(double)(x[0]) )
|
---|
657 | {
|
---|
658 | state.repterminationtype = -2;
|
---|
659 | return;
|
---|
660 | }
|
---|
661 | for(i=1; i<=m-1; i++)
|
---|
662 | {
|
---|
663 | if( (double)(x[1])>(double)(x[0]) & (double)(x[i])<=(double)(x[i-1]) | (double)(x[1])<(double)(x[0]) & (double)(x[i])>=(double)(x[i-1]) )
|
---|
664 | {
|
---|
665 | state.repterminationtype = -2;
|
---|
666 | return;
|
---|
667 | }
|
---|
668 | }
|
---|
669 |
|
---|
670 | //
|
---|
671 | // auto-select H if necessary
|
---|
672 | //
|
---|
673 | if( (double)(h)==(double)(0) )
|
---|
674 | {
|
---|
675 | v = Math.Abs(x[1]-x[0]);
|
---|
676 | for(i=2; i<=m-1; i++)
|
---|
677 | {
|
---|
678 | v = Math.Min(v, Math.Abs(x[i]-x[i-1]));
|
---|
679 | }
|
---|
680 | h = 0.001*v;
|
---|
681 | }
|
---|
682 |
|
---|
683 | //
|
---|
684 | // store parameters
|
---|
685 | //
|
---|
686 | state.n = n;
|
---|
687 | state.m = m;
|
---|
688 | state.h = h;
|
---|
689 | state.eps = Math.Abs(eps);
|
---|
690 | state.fraceps = (double)(eps)<(double)(0);
|
---|
691 | state.xg = new double[m];
|
---|
692 | for(i_=0; i_<=m-1;i_++)
|
---|
693 | {
|
---|
694 | state.xg[i_] = x[i_];
|
---|
695 | }
|
---|
696 | if( (double)(x[1])>(double)(x[0]) )
|
---|
697 | {
|
---|
698 | state.xscale = 1;
|
---|
699 | }
|
---|
700 | else
|
---|
701 | {
|
---|
702 | state.xscale = -1;
|
---|
703 | for(i_=0; i_<=m-1;i_++)
|
---|
704 | {
|
---|
705 | state.xg[i_] = -1*state.xg[i_];
|
---|
706 | }
|
---|
707 | }
|
---|
708 | state.yc = new double[n];
|
---|
709 | for(i_=0; i_<=n-1;i_++)
|
---|
710 | {
|
---|
711 | state.yc[i_] = y[i_];
|
---|
712 | }
|
---|
713 | state.solvertype = solvertype;
|
---|
714 | state.repterminationtype = 0;
|
---|
715 | }
|
---|
716 | }
|
---|
717 | }
|
---|