1 | /*************************************************************************
|
---|
2 | Cephes Math Library Release 2.8: June, 2000
|
---|
3 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
4 |
|
---|
5 | Contributors:
|
---|
6 | * Sergey Bochkanov (ALGLIB project). Translation from C to
|
---|
7 | pseudocode.
|
---|
8 |
|
---|
9 | See subroutines comments for additional copyrights.
|
---|
10 |
|
---|
11 | >>> SOURCE LICENSE >>>
|
---|
12 | This program is free software; you can redistribute it and/or modify
|
---|
13 | it under the terms of the GNU General Public License as published by
|
---|
14 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
15 | License, or (at your option) any later version.
|
---|
16 |
|
---|
17 | This program is distributed in the hope that it will be useful,
|
---|
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
20 | GNU General Public License for more details.
|
---|
21 |
|
---|
22 | A copy of the GNU General Public License is available at
|
---|
23 | http://www.fsf.org/licensing/licenses
|
---|
24 |
|
---|
25 | >>> END OF LICENSE >>>
|
---|
26 | *************************************************************************/
|
---|
27 |
|
---|
28 | using System;
|
---|
29 |
|
---|
30 | namespace alglib
|
---|
31 | {
|
---|
32 | public class normaldistr
|
---|
33 | {
|
---|
34 | /*************************************************************************
|
---|
35 | Error function
|
---|
36 |
|
---|
37 | The integral is
|
---|
38 |
|
---|
39 | x
|
---|
40 | -
|
---|
41 | 2 | | 2
|
---|
42 | erf(x) = -------- | exp( - t ) dt.
|
---|
43 | sqrt(pi) | |
|
---|
44 | -
|
---|
45 | 0
|
---|
46 |
|
---|
47 | For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
|
---|
48 | erf(x) = 1 - erfc(x).
|
---|
49 |
|
---|
50 |
|
---|
51 | ACCURACY:
|
---|
52 |
|
---|
53 | Relative error:
|
---|
54 | arithmetic domain # trials peak rms
|
---|
55 | IEEE 0,1 30000 3.7e-16 1.0e-16
|
---|
56 |
|
---|
57 | Cephes Math Library Release 2.8: June, 2000
|
---|
58 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
59 | *************************************************************************/
|
---|
60 | public static double erf(double x)
|
---|
61 | {
|
---|
62 | double result = 0;
|
---|
63 | double xsq = 0;
|
---|
64 | double s = 0;
|
---|
65 | double p = 0;
|
---|
66 | double q = 0;
|
---|
67 |
|
---|
68 | s = Math.Sign(x);
|
---|
69 | x = Math.Abs(x);
|
---|
70 | if( (double)(x)<(double)(0.5) )
|
---|
71 | {
|
---|
72 | xsq = x*x;
|
---|
73 | p = 0.007547728033418631287834;
|
---|
74 | p = 0.288805137207594084924010+xsq*p;
|
---|
75 | p = 14.3383842191748205576712+xsq*p;
|
---|
76 | p = 38.0140318123903008244444+xsq*p;
|
---|
77 | p = 3017.82788536507577809226+xsq*p;
|
---|
78 | p = 7404.07142710151470082064+xsq*p;
|
---|
79 | p = 80437.3630960840172832162+xsq*p;
|
---|
80 | q = 0.0;
|
---|
81 | q = 1.00000000000000000000000+xsq*q;
|
---|
82 | q = 38.0190713951939403753468+xsq*q;
|
---|
83 | q = 658.070155459240506326937+xsq*q;
|
---|
84 | q = 6379.60017324428279487120+xsq*q;
|
---|
85 | q = 34216.5257924628539769006+xsq*q;
|
---|
86 | q = 80437.3630960840172826266+xsq*q;
|
---|
87 | result = s*1.1283791670955125738961589031*x*p/q;
|
---|
88 | return result;
|
---|
89 | }
|
---|
90 | if( (double)(x)>=(double)(10) )
|
---|
91 | {
|
---|
92 | result = s;
|
---|
93 | return result;
|
---|
94 | }
|
---|
95 | result = s*(1-erfc(x));
|
---|
96 | return result;
|
---|
97 | }
|
---|
98 |
|
---|
99 |
|
---|
100 | /*************************************************************************
|
---|
101 | Complementary error function
|
---|
102 |
|
---|
103 | 1 - erf(x) =
|
---|
104 |
|
---|
105 | inf.
|
---|
106 | -
|
---|
107 | 2 | | 2
|
---|
108 | erfc(x) = -------- | exp( - t ) dt
|
---|
109 | sqrt(pi) | |
|
---|
110 | -
|
---|
111 | x
|
---|
112 |
|
---|
113 |
|
---|
114 | For small x, erfc(x) = 1 - erf(x); otherwise rational
|
---|
115 | approximations are computed.
|
---|
116 |
|
---|
117 |
|
---|
118 | ACCURACY:
|
---|
119 |
|
---|
120 | Relative error:
|
---|
121 | arithmetic domain # trials peak rms
|
---|
122 | IEEE 0,26.6417 30000 5.7e-14 1.5e-14
|
---|
123 |
|
---|
124 | Cephes Math Library Release 2.8: June, 2000
|
---|
125 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
126 | *************************************************************************/
|
---|
127 | public static double erfc(double x)
|
---|
128 | {
|
---|
129 | double result = 0;
|
---|
130 | double p = 0;
|
---|
131 | double q = 0;
|
---|
132 |
|
---|
133 | if( (double)(x)<(double)(0) )
|
---|
134 | {
|
---|
135 | result = 2-erfc(-x);
|
---|
136 | return result;
|
---|
137 | }
|
---|
138 | if( (double)(x)<(double)(0.5) )
|
---|
139 | {
|
---|
140 | result = 1.0-erf(x);
|
---|
141 | return result;
|
---|
142 | }
|
---|
143 | if( (double)(x)>=(double)(10) )
|
---|
144 | {
|
---|
145 | result = 0;
|
---|
146 | return result;
|
---|
147 | }
|
---|
148 | p = 0.0;
|
---|
149 | p = 0.5641877825507397413087057563+x*p;
|
---|
150 | p = 9.675807882987265400604202961+x*p;
|
---|
151 | p = 77.08161730368428609781633646+x*p;
|
---|
152 | p = 368.5196154710010637133875746+x*p;
|
---|
153 | p = 1143.262070703886173606073338+x*p;
|
---|
154 | p = 2320.439590251635247384768711+x*p;
|
---|
155 | p = 2898.0293292167655611275846+x*p;
|
---|
156 | p = 1826.3348842295112592168999+x*p;
|
---|
157 | q = 1.0;
|
---|
158 | q = 17.14980943627607849376131193+x*q;
|
---|
159 | q = 137.1255960500622202878443578+x*q;
|
---|
160 | q = 661.7361207107653469211984771+x*q;
|
---|
161 | q = 2094.384367789539593790281779+x*q;
|
---|
162 | q = 4429.612803883682726711528526+x*q;
|
---|
163 | q = 6089.5424232724435504633068+x*q;
|
---|
164 | q = 4958.82756472114071495438422+x*q;
|
---|
165 | q = 1826.3348842295112595576438+x*q;
|
---|
166 | result = Math.Exp(-AP.Math.Sqr(x))*p/q;
|
---|
167 | return result;
|
---|
168 | }
|
---|
169 |
|
---|
170 |
|
---|
171 | /*************************************************************************
|
---|
172 | Normal distribution function
|
---|
173 |
|
---|
174 | Returns the area under the Gaussian probability density
|
---|
175 | function, integrated from minus infinity to x:
|
---|
176 |
|
---|
177 | x
|
---|
178 | -
|
---|
179 | 1 | | 2
|
---|
180 | ndtr(x) = --------- | exp( - t /2 ) dt
|
---|
181 | sqrt(2pi) | |
|
---|
182 | -
|
---|
183 | -inf.
|
---|
184 |
|
---|
185 | = ( 1 + erf(z) ) / 2
|
---|
186 | = erfc(z) / 2
|
---|
187 |
|
---|
188 | where z = x/sqrt(2). Computation is via the functions
|
---|
189 | erf and erfc.
|
---|
190 |
|
---|
191 |
|
---|
192 | ACCURACY:
|
---|
193 |
|
---|
194 | Relative error:
|
---|
195 | arithmetic domain # trials peak rms
|
---|
196 | IEEE -13,0 30000 3.4e-14 6.7e-15
|
---|
197 |
|
---|
198 | Cephes Math Library Release 2.8: June, 2000
|
---|
199 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
200 | *************************************************************************/
|
---|
201 | public static double normaldistribution(double x)
|
---|
202 | {
|
---|
203 | double result = 0;
|
---|
204 |
|
---|
205 | result = 0.5*(erf(x/1.41421356237309504880)+1);
|
---|
206 | return result;
|
---|
207 | }
|
---|
208 |
|
---|
209 |
|
---|
210 | /*************************************************************************
|
---|
211 | Inverse of the error function
|
---|
212 |
|
---|
213 | Cephes Math Library Release 2.8: June, 2000
|
---|
214 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
215 | *************************************************************************/
|
---|
216 | public static double inverf(double e)
|
---|
217 | {
|
---|
218 | double result = 0;
|
---|
219 |
|
---|
220 | result = invnormaldistribution(0.5*(e+1))/Math.Sqrt(2);
|
---|
221 | return result;
|
---|
222 | }
|
---|
223 |
|
---|
224 |
|
---|
225 | /*************************************************************************
|
---|
226 | Inverse of Normal distribution function
|
---|
227 |
|
---|
228 | Returns the argument, x, for which the area under the
|
---|
229 | Gaussian probability density function (integrated from
|
---|
230 | minus infinity to x) is equal to y.
|
---|
231 |
|
---|
232 |
|
---|
233 | For small arguments 0 < y < exp(-2), the program computes
|
---|
234 | z = sqrt( -2.0 * log(y) ); then the approximation is
|
---|
235 | x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
|
---|
236 | There are two rational functions P/Q, one for 0 < y < exp(-32)
|
---|
237 | and the other for y up to exp(-2). For larger arguments,
|
---|
238 | w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
|
---|
239 |
|
---|
240 | ACCURACY:
|
---|
241 |
|
---|
242 | Relative error:
|
---|
243 | arithmetic domain # trials peak rms
|
---|
244 | IEEE 0.125, 1 20000 7.2e-16 1.3e-16
|
---|
245 | IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
|
---|
246 |
|
---|
247 | Cephes Math Library Release 2.8: June, 2000
|
---|
248 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
|
---|
249 | *************************************************************************/
|
---|
250 | public static double invnormaldistribution(double y0)
|
---|
251 | {
|
---|
252 | double result = 0;
|
---|
253 | double expm2 = 0;
|
---|
254 | double s2pi = 0;
|
---|
255 | double x = 0;
|
---|
256 | double y = 0;
|
---|
257 | double z = 0;
|
---|
258 | double y2 = 0;
|
---|
259 | double x0 = 0;
|
---|
260 | double x1 = 0;
|
---|
261 | int code = 0;
|
---|
262 | double p0 = 0;
|
---|
263 | double q0 = 0;
|
---|
264 | double p1 = 0;
|
---|
265 | double q1 = 0;
|
---|
266 | double p2 = 0;
|
---|
267 | double q2 = 0;
|
---|
268 |
|
---|
269 | expm2 = 0.13533528323661269189;
|
---|
270 | s2pi = 2.50662827463100050242;
|
---|
271 | if( (double)(y0)<=(double)(0) )
|
---|
272 | {
|
---|
273 | result = -AP.Math.MaxRealNumber;
|
---|
274 | return result;
|
---|
275 | }
|
---|
276 | if( (double)(y0)>=(double)(1) )
|
---|
277 | {
|
---|
278 | result = AP.Math.MaxRealNumber;
|
---|
279 | return result;
|
---|
280 | }
|
---|
281 | code = 1;
|
---|
282 | y = y0;
|
---|
283 | if( (double)(y)>(double)(1.0-expm2) )
|
---|
284 | {
|
---|
285 | y = 1.0-y;
|
---|
286 | code = 0;
|
---|
287 | }
|
---|
288 | if( (double)(y)>(double)(expm2) )
|
---|
289 | {
|
---|
290 | y = y-0.5;
|
---|
291 | y2 = y*y;
|
---|
292 | p0 = -59.9633501014107895267;
|
---|
293 | p0 = 98.0010754185999661536+y2*p0;
|
---|
294 | p0 = -56.6762857469070293439+y2*p0;
|
---|
295 | p0 = 13.9312609387279679503+y2*p0;
|
---|
296 | p0 = -1.23916583867381258016+y2*p0;
|
---|
297 | q0 = 1;
|
---|
298 | q0 = 1.95448858338141759834+y2*q0;
|
---|
299 | q0 = 4.67627912898881538453+y2*q0;
|
---|
300 | q0 = 86.3602421390890590575+y2*q0;
|
---|
301 | q0 = -225.462687854119370527+y2*q0;
|
---|
302 | q0 = 200.260212380060660359+y2*q0;
|
---|
303 | q0 = -82.0372256168333339912+y2*q0;
|
---|
304 | q0 = 15.9056225126211695515+y2*q0;
|
---|
305 | q0 = -1.18331621121330003142+y2*q0;
|
---|
306 | x = y+y*y2*p0/q0;
|
---|
307 | x = x*s2pi;
|
---|
308 | result = x;
|
---|
309 | return result;
|
---|
310 | }
|
---|
311 | x = Math.Sqrt(-(2.0*Math.Log(y)));
|
---|
312 | x0 = x-Math.Log(x)/x;
|
---|
313 | z = 1.0/x;
|
---|
314 | if( (double)(x)<(double)(8.0) )
|
---|
315 | {
|
---|
316 | p1 = 4.05544892305962419923;
|
---|
317 | p1 = 31.5251094599893866154+z*p1;
|
---|
318 | p1 = 57.1628192246421288162+z*p1;
|
---|
319 | p1 = 44.0805073893200834700+z*p1;
|
---|
320 | p1 = 14.6849561928858024014+z*p1;
|
---|
321 | p1 = 2.18663306850790267539+z*p1;
|
---|
322 | p1 = -(1.40256079171354495875*0.1)+z*p1;
|
---|
323 | p1 = -(3.50424626827848203418*0.01)+z*p1;
|
---|
324 | p1 = -(8.57456785154685413611*0.0001)+z*p1;
|
---|
325 | q1 = 1;
|
---|
326 | q1 = 15.7799883256466749731+z*q1;
|
---|
327 | q1 = 45.3907635128879210584+z*q1;
|
---|
328 | q1 = 41.3172038254672030440+z*q1;
|
---|
329 | q1 = 15.0425385692907503408+z*q1;
|
---|
330 | q1 = 2.50464946208309415979+z*q1;
|
---|
331 | q1 = -(1.42182922854787788574*0.1)+z*q1;
|
---|
332 | q1 = -(3.80806407691578277194*0.01)+z*q1;
|
---|
333 | q1 = -(9.33259480895457427372*0.0001)+z*q1;
|
---|
334 | x1 = z*p1/q1;
|
---|
335 | }
|
---|
336 | else
|
---|
337 | {
|
---|
338 | p2 = 3.23774891776946035970;
|
---|
339 | p2 = 6.91522889068984211695+z*p2;
|
---|
340 | p2 = 3.93881025292474443415+z*p2;
|
---|
341 | p2 = 1.33303460815807542389+z*p2;
|
---|
342 | p2 = 2.01485389549179081538*0.1+z*p2;
|
---|
343 | p2 = 1.23716634817820021358*0.01+z*p2;
|
---|
344 | p2 = 3.01581553508235416007*0.0001+z*p2;
|
---|
345 | p2 = 2.65806974686737550832*0.000001+z*p2;
|
---|
346 | p2 = 6.23974539184983293730*0.000000001+z*p2;
|
---|
347 | q2 = 1;
|
---|
348 | q2 = 6.02427039364742014255+z*q2;
|
---|
349 | q2 = 3.67983563856160859403+z*q2;
|
---|
350 | q2 = 1.37702099489081330271+z*q2;
|
---|
351 | q2 = 2.16236993594496635890*0.1+z*q2;
|
---|
352 | q2 = 1.34204006088543189037*0.01+z*q2;
|
---|
353 | q2 = 3.28014464682127739104*0.0001+z*q2;
|
---|
354 | q2 = 2.89247864745380683936*0.000001+z*q2;
|
---|
355 | q2 = 6.79019408009981274425*0.000000001+z*q2;
|
---|
356 | x1 = z*p2/q2;
|
---|
357 | }
|
---|
358 | x = x0-x1;
|
---|
359 | if( code!=0 )
|
---|
360 | {
|
---|
361 | x = -x;
|
---|
362 | }
|
---|
363 | result = x;
|
---|
364 | return result;
|
---|
365 | }
|
---|
366 | }
|
---|
367 | }
|
---|