1 | /*************************************************************************
|
---|
2 | Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class fft
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | 1-dimensional complex FFT.
|
---|
29 |
|
---|
30 | Array size N may be arbitrary number (composite or prime). Composite N's
|
---|
31 | are handled with cache-oblivious variation of a Cooley-Tukey algorithm.
|
---|
32 | Small prime-factors are transformed using hard coded codelets (similar to
|
---|
33 | FFTW codelets, but without low-level optimization), large prime-factors
|
---|
34 | are handled with Bluestein's algorithm.
|
---|
35 |
|
---|
36 | Fastests transforms are for smooth N's (prime factors are 2, 3, 5 only),
|
---|
37 | most fast for powers of 2. When N have prime factors larger than these,
|
---|
38 | but orders of magnitude smaller than N, computations will be about 4 times
|
---|
39 | slower than for nearby highly composite N's. When N itself is prime, speed
|
---|
40 | will be 6 times lower.
|
---|
41 |
|
---|
42 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
43 |
|
---|
44 | INPUT PARAMETERS
|
---|
45 | A - array[0..N-1] - complex function to be transformed
|
---|
46 | N - problem size
|
---|
47 |
|
---|
48 | OUTPUT PARAMETERS
|
---|
49 | A - DFT of a input array, array[0..N-1]
|
---|
50 | A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
51 |
|
---|
52 |
|
---|
53 | -- ALGLIB --
|
---|
54 | Copyright 29.05.2009 by Bochkanov Sergey
|
---|
55 | *************************************************************************/
|
---|
56 | public static void fftc1d(ref AP.Complex[] a,
|
---|
57 | int n)
|
---|
58 | {
|
---|
59 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
60 | int i = 0;
|
---|
61 | double[] buf = new double[0];
|
---|
62 |
|
---|
63 | System.Diagnostics.Debug.Assert(n>0, "FFTC1D: incorrect N!");
|
---|
64 |
|
---|
65 | //
|
---|
66 | // Special case: N=1, FFT is just identity transform.
|
---|
67 | // After this block we assume that N is strictly greater than 1.
|
---|
68 | //
|
---|
69 | if( n==1 )
|
---|
70 | {
|
---|
71 | return;
|
---|
72 | }
|
---|
73 |
|
---|
74 | //
|
---|
75 | // convert input array to the more convinient format
|
---|
76 | //
|
---|
77 | buf = new double[2*n];
|
---|
78 | for(i=0; i<=n-1; i++)
|
---|
79 | {
|
---|
80 | buf[2*i+0] = a[i].x;
|
---|
81 | buf[2*i+1] = a[i].y;
|
---|
82 | }
|
---|
83 |
|
---|
84 | //
|
---|
85 | // Generate plan and execute it.
|
---|
86 | //
|
---|
87 | // Plan is a combination of a successive factorizations of N and
|
---|
88 | // precomputed data. It is much like a FFTW plan, but is not stored
|
---|
89 | // between subroutine calls and is much simpler.
|
---|
90 | //
|
---|
91 | ftbase.ftbasegeneratecomplexfftplan(n, ref plan);
|
---|
92 | ftbase.ftbaseexecuteplan(ref buf, 0, n, ref plan);
|
---|
93 |
|
---|
94 | //
|
---|
95 | // result
|
---|
96 | //
|
---|
97 | for(i=0; i<=n-1; i++)
|
---|
98 | {
|
---|
99 | a[i].x = buf[2*i+0];
|
---|
100 | a[i].y = buf[2*i+1];
|
---|
101 | }
|
---|
102 | }
|
---|
103 |
|
---|
104 |
|
---|
105 | /*************************************************************************
|
---|
106 | 1-dimensional complex inverse FFT.
|
---|
107 |
|
---|
108 | Array size N may be arbitrary number (composite or prime). Algorithm has
|
---|
109 | O(N*logN) complexity for any N (composite or prime).
|
---|
110 |
|
---|
111 | See FFTC1D() description for more information about algorithm performance.
|
---|
112 |
|
---|
113 | INPUT PARAMETERS
|
---|
114 | A - array[0..N-1] - complex array to be transformed
|
---|
115 | N - problem size
|
---|
116 |
|
---|
117 | OUTPUT PARAMETERS
|
---|
118 | A - inverse DFT of a input array, array[0..N-1]
|
---|
119 | A_out[j] = SUM(A_in[k]/N*exp(+2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
120 |
|
---|
121 |
|
---|
122 | -- ALGLIB --
|
---|
123 | Copyright 29.05.2009 by Bochkanov Sergey
|
---|
124 | *************************************************************************/
|
---|
125 | public static void fftc1dinv(ref AP.Complex[] a,
|
---|
126 | int n)
|
---|
127 | {
|
---|
128 | int i = 0;
|
---|
129 |
|
---|
130 | System.Diagnostics.Debug.Assert(n>0, "FFTC1DInv: incorrect N!");
|
---|
131 |
|
---|
132 | //
|
---|
133 | // Inverse DFT can be expressed in terms of the DFT as
|
---|
134 | //
|
---|
135 | // invfft(x) = fft(x')'/N
|
---|
136 | //
|
---|
137 | // here x' means conj(x).
|
---|
138 | //
|
---|
139 | for(i=0; i<=n-1; i++)
|
---|
140 | {
|
---|
141 | a[i].y = -a[i].y;
|
---|
142 | }
|
---|
143 | fftc1d(ref a, n);
|
---|
144 | for(i=0; i<=n-1; i++)
|
---|
145 | {
|
---|
146 | a[i].x = a[i].x/n;
|
---|
147 | a[i].y = -(a[i].y/n);
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 |
|
---|
152 | /*************************************************************************
|
---|
153 | 1-dimensional real FFT.
|
---|
154 |
|
---|
155 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
156 |
|
---|
157 | INPUT PARAMETERS
|
---|
158 | A - array[0..N-1] - real function to be transformed
|
---|
159 | N - problem size
|
---|
160 |
|
---|
161 | OUTPUT PARAMETERS
|
---|
162 | F - DFT of a input array, array[0..N-1]
|
---|
163 | F[j] = SUM(A[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
164 |
|
---|
165 | NOTE:
|
---|
166 | F[] satisfies symmetry property F[k] = conj(F[N-k]), so just one half
|
---|
167 | of array is usually needed. But for convinience subroutine returns full
|
---|
168 | complex array (with frequencies above N/2), so its result may be used by
|
---|
169 | other FFT-related subroutines.
|
---|
170 |
|
---|
171 |
|
---|
172 | -- ALGLIB --
|
---|
173 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
174 | *************************************************************************/
|
---|
175 | public static void fftr1d(ref double[] a,
|
---|
176 | int n,
|
---|
177 | ref AP.Complex[] f)
|
---|
178 | {
|
---|
179 | int i = 0;
|
---|
180 | int n2 = 0;
|
---|
181 | int idx = 0;
|
---|
182 | AP.Complex hn = 0;
|
---|
183 | AP.Complex hmnc = 0;
|
---|
184 | AP.Complex v = 0;
|
---|
185 | double[] buf = new double[0];
|
---|
186 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
187 | int i_ = 0;
|
---|
188 |
|
---|
189 | System.Diagnostics.Debug.Assert(n>0, "FFTR1D: incorrect N!");
|
---|
190 |
|
---|
191 | //
|
---|
192 | // Special cases:
|
---|
193 | // * N=1, FFT is just identity transform.
|
---|
194 | // * N=2, FFT is simple too
|
---|
195 | //
|
---|
196 | // After this block we assume that N is strictly greater than 2
|
---|
197 | //
|
---|
198 | if( n==1 )
|
---|
199 | {
|
---|
200 | f = new AP.Complex[1];
|
---|
201 | f[0] = a[0];
|
---|
202 | return;
|
---|
203 | }
|
---|
204 | if( n==2 )
|
---|
205 | {
|
---|
206 | f = new AP.Complex[2];
|
---|
207 | f[0].x = a[0]+a[1];
|
---|
208 | f[0].y = 0;
|
---|
209 | f[1].x = a[0]-a[1];
|
---|
210 | f[1].y = 0;
|
---|
211 | return;
|
---|
212 | }
|
---|
213 |
|
---|
214 | //
|
---|
215 | // Choose between odd-size and even-size FFTs
|
---|
216 | //
|
---|
217 | if( n%2==0 )
|
---|
218 | {
|
---|
219 |
|
---|
220 | //
|
---|
221 | // even-size real FFT, use reduction to the complex task
|
---|
222 | //
|
---|
223 | n2 = n/2;
|
---|
224 | buf = new double[n];
|
---|
225 | for(i_=0; i_<=n-1;i_++)
|
---|
226 | {
|
---|
227 | buf[i_] = a[i_];
|
---|
228 | }
|
---|
229 | ftbase.ftbasegeneratecomplexfftplan(n2, ref plan);
|
---|
230 | ftbase.ftbaseexecuteplan(ref buf, 0, n2, ref plan);
|
---|
231 | f = new AP.Complex[n];
|
---|
232 | for(i=0; i<=n2; i++)
|
---|
233 | {
|
---|
234 | idx = 2*(i%n2);
|
---|
235 | hn.x = buf[idx+0];
|
---|
236 | hn.y = buf[idx+1];
|
---|
237 | idx = 2*((n2-i)%n2);
|
---|
238 | hmnc.x = buf[idx+0];
|
---|
239 | hmnc.y = -buf[idx+1];
|
---|
240 | v.x = -Math.Sin(-(2*Math.PI*i/n));
|
---|
241 | v.y = Math.Cos(-(2*Math.PI*i/n));
|
---|
242 | f[i] = hn+hmnc-v*(hn-hmnc);
|
---|
243 | f[i].x = 0.5*f[i].x;
|
---|
244 | f[i].y = 0.5*f[i].y;
|
---|
245 | }
|
---|
246 | for(i=n2+1; i<=n-1; i++)
|
---|
247 | {
|
---|
248 | f[i] = AP.Math.Conj(f[n-i]);
|
---|
249 | }
|
---|
250 | return;
|
---|
251 | }
|
---|
252 | else
|
---|
253 | {
|
---|
254 |
|
---|
255 | //
|
---|
256 | // use complex FFT
|
---|
257 | //
|
---|
258 | f = new AP.Complex[n];
|
---|
259 | for(i=0; i<=n-1; i++)
|
---|
260 | {
|
---|
261 | f[i] = a[i];
|
---|
262 | }
|
---|
263 | fftc1d(ref f, n);
|
---|
264 | return;
|
---|
265 | }
|
---|
266 | }
|
---|
267 |
|
---|
268 |
|
---|
269 | /*************************************************************************
|
---|
270 | 1-dimensional real inverse FFT.
|
---|
271 |
|
---|
272 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
273 |
|
---|
274 | INPUT PARAMETERS
|
---|
275 | F - array[0..floor(N/2)] - frequencies from forward real FFT
|
---|
276 | N - problem size
|
---|
277 |
|
---|
278 | OUTPUT PARAMETERS
|
---|
279 | A - inverse DFT of a input array, array[0..N-1]
|
---|
280 |
|
---|
281 | NOTE:
|
---|
282 | F[] should satisfy symmetry property F[k] = conj(F[N-k]), so just one
|
---|
283 | half of frequencies array is needed - elements from 0 to floor(N/2). F[0]
|
---|
284 | is ALWAYS real. If N is even F[floor(N/2)] is real too. If N is odd, then
|
---|
285 | F[floor(N/2)] has no special properties.
|
---|
286 |
|
---|
287 | Relying on properties noted above, FFTR1DInv subroutine uses only elements
|
---|
288 | from 0th to floor(N/2)-th. It ignores imaginary part of F[0], and in case
|
---|
289 | N is even it ignores imaginary part of F[floor(N/2)] too. So you can pass
|
---|
290 | either frequencies array with N elements or reduced array with roughly N/2
|
---|
291 | elements - subroutine will successfully transform both.
|
---|
292 |
|
---|
293 |
|
---|
294 | -- ALGLIB --
|
---|
295 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
296 | *************************************************************************/
|
---|
297 | public static void fftr1dinv(ref AP.Complex[] f,
|
---|
298 | int n,
|
---|
299 | ref double[] a)
|
---|
300 | {
|
---|
301 | int i = 0;
|
---|
302 | double[] h = new double[0];
|
---|
303 | AP.Complex[] fh = new AP.Complex[0];
|
---|
304 |
|
---|
305 | System.Diagnostics.Debug.Assert(n>0, "FFTR1DInv: incorrect N!");
|
---|
306 |
|
---|
307 | //
|
---|
308 | // Special case: N=1, FFT is just identity transform.
|
---|
309 | // After this block we assume that N is strictly greater than 1.
|
---|
310 | //
|
---|
311 | if( n==1 )
|
---|
312 | {
|
---|
313 | a = new double[1];
|
---|
314 | a[0] = f[0].x;
|
---|
315 | return;
|
---|
316 | }
|
---|
317 |
|
---|
318 | //
|
---|
319 | // inverse real FFT is reduced to the inverse real FHT,
|
---|
320 | // which is reduced to the forward real FHT,
|
---|
321 | // which is reduced to the forward real FFT.
|
---|
322 | //
|
---|
323 | // Don't worry, it is really compact and efficient reduction :)
|
---|
324 | //
|
---|
325 | h = new double[n];
|
---|
326 | a = new double[n];
|
---|
327 | h[0] = f[0].x;
|
---|
328 | for(i=1; i<=(int)Math.Floor((double)(n)/(double)(2))-1; i++)
|
---|
329 | {
|
---|
330 | h[i] = f[i].x-f[i].y;
|
---|
331 | h[n-i] = f[i].x+f[i].y;
|
---|
332 | }
|
---|
333 | if( n%2==0 )
|
---|
334 | {
|
---|
335 | h[(int)Math.Floor((double)(n)/(double)(2))] = f[(int)Math.Floor((double)(n)/(double)(2))].x;
|
---|
336 | }
|
---|
337 | else
|
---|
338 | {
|
---|
339 | h[(int)Math.Floor((double)(n)/(double)(2))] = f[(int)Math.Floor((double)(n)/(double)(2))].x-f[(int)Math.Floor((double)(n)/(double)(2))].y;
|
---|
340 | h[(int)Math.Floor((double)(n)/(double)(2))+1] = f[(int)Math.Floor((double)(n)/(double)(2))].x+f[(int)Math.Floor((double)(n)/(double)(2))].y;
|
---|
341 | }
|
---|
342 | fftr1d(ref h, n, ref fh);
|
---|
343 | for(i=0; i<=n-1; i++)
|
---|
344 | {
|
---|
345 | a[i] = (fh[i].x-fh[i].y)/n;
|
---|
346 | }
|
---|
347 | }
|
---|
348 |
|
---|
349 |
|
---|
350 | /*************************************************************************
|
---|
351 | Internal subroutine. Never call it directly!
|
---|
352 |
|
---|
353 |
|
---|
354 | -- ALGLIB --
|
---|
355 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
356 | *************************************************************************/
|
---|
357 | public static void fftr1dinternaleven(ref double[] a,
|
---|
358 | int n,
|
---|
359 | ref double[] buf,
|
---|
360 | ref ftbase.ftplan plan)
|
---|
361 | {
|
---|
362 | double x = 0;
|
---|
363 | double y = 0;
|
---|
364 | int i = 0;
|
---|
365 | int n2 = 0;
|
---|
366 | int idx = 0;
|
---|
367 | AP.Complex hn = 0;
|
---|
368 | AP.Complex hmnc = 0;
|
---|
369 | AP.Complex v = 0;
|
---|
370 | int i_ = 0;
|
---|
371 |
|
---|
372 | System.Diagnostics.Debug.Assert(n>0 & n%2==0, "FFTR1DEvenInplace: incorrect N!");
|
---|
373 |
|
---|
374 | //
|
---|
375 | // Special cases:
|
---|
376 | // * N=2
|
---|
377 | //
|
---|
378 | // After this block we assume that N is strictly greater than 2
|
---|
379 | //
|
---|
380 | if( n==2 )
|
---|
381 | {
|
---|
382 | x = a[0]+a[1];
|
---|
383 | y = a[0]-a[1];
|
---|
384 | a[0] = x;
|
---|
385 | a[1] = y;
|
---|
386 | return;
|
---|
387 | }
|
---|
388 |
|
---|
389 | //
|
---|
390 | // even-size real FFT, use reduction to the complex task
|
---|
391 | //
|
---|
392 | n2 = n/2;
|
---|
393 | for(i_=0; i_<=n-1;i_++)
|
---|
394 | {
|
---|
395 | buf[i_] = a[i_];
|
---|
396 | }
|
---|
397 | ftbase.ftbaseexecuteplan(ref buf, 0, n2, ref plan);
|
---|
398 | a[0] = buf[0]+buf[1];
|
---|
399 | for(i=1; i<=n2-1; i++)
|
---|
400 | {
|
---|
401 | idx = 2*(i%n2);
|
---|
402 | hn.x = buf[idx+0];
|
---|
403 | hn.y = buf[idx+1];
|
---|
404 | idx = 2*(n2-i);
|
---|
405 | hmnc.x = buf[idx+0];
|
---|
406 | hmnc.y = -buf[idx+1];
|
---|
407 | v.x = -Math.Sin(-(2*Math.PI*i/n));
|
---|
408 | v.y = Math.Cos(-(2*Math.PI*i/n));
|
---|
409 | v = hn+hmnc-v*(hn-hmnc);
|
---|
410 | a[2*i+0] = 0.5*v.x;
|
---|
411 | a[2*i+1] = 0.5*v.y;
|
---|
412 | }
|
---|
413 | a[1] = buf[0]-buf[1];
|
---|
414 | }
|
---|
415 |
|
---|
416 |
|
---|
417 | /*************************************************************************
|
---|
418 | Internal subroutine. Never call it directly!
|
---|
419 |
|
---|
420 |
|
---|
421 | -- ALGLIB --
|
---|
422 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
423 | *************************************************************************/
|
---|
424 | public static void fftr1dinvinternaleven(ref double[] a,
|
---|
425 | int n,
|
---|
426 | ref double[] buf,
|
---|
427 | ref ftbase.ftplan plan)
|
---|
428 | {
|
---|
429 | double x = 0;
|
---|
430 | double y = 0;
|
---|
431 | double t = 0;
|
---|
432 | int i = 0;
|
---|
433 | int n2 = 0;
|
---|
434 |
|
---|
435 | System.Diagnostics.Debug.Assert(n>0 & n%2==0, "FFTR1DInvInternalEven: incorrect N!");
|
---|
436 |
|
---|
437 | //
|
---|
438 | // Special cases:
|
---|
439 | // * N=2
|
---|
440 | //
|
---|
441 | // After this block we assume that N is strictly greater than 2
|
---|
442 | //
|
---|
443 | if( n==2 )
|
---|
444 | {
|
---|
445 | x = 0.5*(a[0]+a[1]);
|
---|
446 | y = 0.5*(a[0]-a[1]);
|
---|
447 | a[0] = x;
|
---|
448 | a[1] = y;
|
---|
449 | return;
|
---|
450 | }
|
---|
451 |
|
---|
452 | //
|
---|
453 | // inverse real FFT is reduced to the inverse real FHT,
|
---|
454 | // which is reduced to the forward real FHT,
|
---|
455 | // which is reduced to the forward real FFT.
|
---|
456 | //
|
---|
457 | // Don't worry, it is really compact and efficient reduction :)
|
---|
458 | //
|
---|
459 | n2 = n/2;
|
---|
460 | buf[0] = a[0];
|
---|
461 | for(i=1; i<=n2-1; i++)
|
---|
462 | {
|
---|
463 | x = a[2*i+0];
|
---|
464 | y = a[2*i+1];
|
---|
465 | buf[i] = x-y;
|
---|
466 | buf[n-i] = x+y;
|
---|
467 | }
|
---|
468 | buf[n2] = a[1];
|
---|
469 | fftr1dinternaleven(ref buf, n, ref a, ref plan);
|
---|
470 | a[0] = buf[0]/n;
|
---|
471 | t = (double)(1)/(double)(n);
|
---|
472 | for(i=1; i<=n2-1; i++)
|
---|
473 | {
|
---|
474 | x = buf[2*i+0];
|
---|
475 | y = buf[2*i+1];
|
---|
476 | a[i] = t*(x-y);
|
---|
477 | a[n-i] = t*(x+y);
|
---|
478 | }
|
---|
479 | a[n2] = buf[1]/n;
|
---|
480 | }
|
---|
481 | }
|
---|
482 | }
|
---|