Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3.2/sources/HeuristicLab.ExtLibs/HeuristicLab.ALGLIB/2.1.2.2591/ALGLIB-2.1.2.2591/fdistr.cs @ 5793

Last change on this file since 5793 was 2645, checked in by mkommend, 15 years ago

extracted external libraries and adapted dependent plugins (ticket #837)

File size: 7.1 KB
Line 
1/*************************************************************************
2Cephes Math Library Release 2.8:  June, 2000
3Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
4
5Contributors:
6    * Sergey Bochkanov (ALGLIB project). Translation from C to
7      pseudocode.
8
9See subroutines comments for additional copyrights.
10
11>>> SOURCE LICENSE >>>
12This program is free software; you can redistribute it and/or modify
13it under the terms of the GNU General Public License as published by
14the Free Software Foundation (www.fsf.org); either version 2 of the
15License, or (at your option) any later version.
16
17This program is distributed in the hope that it will be useful,
18but WITHOUT ANY WARRANTY; without even the implied warranty of
19MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20GNU General Public License for more details.
21
22A copy of the GNU General Public License is available at
23http://www.fsf.org/licensing/licenses
24
25>>> END OF LICENSE >>>
26*************************************************************************/
27
28using System;
29
30namespace alglib
31{
32    public class fdistr
33    {
34        /*************************************************************************
35        F distribution
36
37        Returns the area from zero to x under the F density
38        function (also known as Snedcor's density or the
39        variance ratio density).  This is the density
40        of x = (u1/df1)/(u2/df2), where u1 and u2 are random
41        variables having Chi square distributions with df1
42        and df2 degrees of freedom, respectively.
43        The incomplete beta integral is used, according to the
44        formula
45
46        P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
47
48
49        The arguments a and b are greater than zero, and x is
50        nonnegative.
51
52        ACCURACY:
53
54        Tested at random points (a,b,x).
55
56                       x     a,b                     Relative error:
57        arithmetic  domain  domain     # trials      peak         rms
58           IEEE      0,1    0,100       100000      9.8e-15     1.7e-15
59           IEEE      1,5    0,100       100000      6.5e-15     3.5e-16
60           IEEE      0,1    1,10000     100000      2.2e-11     3.3e-12
61           IEEE      1,5    1,10000     100000      1.1e-11     1.7e-13
62
63        Cephes Math Library Release 2.8:  June, 2000
64        Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
65        *************************************************************************/
66        public static double fdistribution(int a,
67            int b,
68            double x)
69        {
70            double result = 0;
71            double w = 0;
72
73            System.Diagnostics.Debug.Assert(a>=1 & b>=1 & (double)(x)>=(double)(0), "Domain error in FDistribution");
74            w = a*x;
75            w = w/(b+w);
76            result = ibetaf.incompletebeta(0.5*a, 0.5*b, w);
77            return result;
78        }
79
80
81        /*************************************************************************
82        Complemented F distribution
83
84        Returns the area from x to infinity under the F density
85        function (also known as Snedcor's density or the
86        variance ratio density).
87
88
89                             inf.
90                              -
91                     1       | |  a-1      b-1
92        1-P(x)  =  ------    |   t    (1-t)    dt
93                   B(a,b)  | |
94                            -
95                             x
96
97
98        The incomplete beta integral is used, according to the
99        formula
100
101        P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
102
103
104        ACCURACY:
105
106        Tested at random points (a,b,x) in the indicated intervals.
107                       x     a,b                     Relative error:
108        arithmetic  domain  domain     # trials      peak         rms
109           IEEE      0,1    1,100       100000      3.7e-14     5.9e-16
110           IEEE      1,5    1,100       100000      8.0e-15     1.6e-15
111           IEEE      0,1    1,10000     100000      1.8e-11     3.5e-13
112           IEEE      1,5    1,10000     100000      2.0e-11     3.0e-12
113
114        Cephes Math Library Release 2.8:  June, 2000
115        Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
116        *************************************************************************/
117        public static double fcdistribution(int a,
118            int b,
119            double x)
120        {
121            double result = 0;
122            double w = 0;
123
124            System.Diagnostics.Debug.Assert(a>=1 & b>=1 & (double)(x)>=(double)(0), "Domain error in FCDistribution");
125            w = b/(b+a*x);
126            result = ibetaf.incompletebeta(0.5*b, 0.5*a, w);
127            return result;
128        }
129
130
131        /*************************************************************************
132        Inverse of complemented F distribution
133
134        Finds the F density argument x such that the integral
135        from x to infinity of the F density is equal to the
136        given probability p.
137
138        This is accomplished using the inverse beta integral
139        function and the relations
140
141             z = incbi( df2/2, df1/2, p )
142             x = df2 (1-z) / (df1 z).
143
144        Note: the following relations hold for the inverse of
145        the uncomplemented F distribution:
146
147             z = incbi( df1/2, df2/2, p )
148             x = df2 z / (df1 (1-z)).
149
150        ACCURACY:
151
152        Tested at random points (a,b,p).
153
154                     a,b                     Relative error:
155        arithmetic  domain     # trials      peak         rms
156         For p between .001 and 1:
157           IEEE     1,100       100000      8.3e-15     4.7e-16
158           IEEE     1,10000     100000      2.1e-11     1.4e-13
159         For p between 10^-6 and 10^-3:
160           IEEE     1,100        50000      1.3e-12     8.4e-15
161           IEEE     1,10000      50000      3.0e-12     4.8e-14
162
163        Cephes Math Library Release 2.8:  June, 2000
164        Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
165        *************************************************************************/
166        public static double invfdistribution(int a,
167            int b,
168            double y)
169        {
170            double result = 0;
171            double w = 0;
172            double x = 0;
173
174            System.Diagnostics.Debug.Assert(a>=1 & b>=1 & (double)(y)>(double)(0) & (double)(y)<=(double)(1), "Domain error in InvFDistribution");
175           
176            //
177            // Compute probability for x = 0.5
178            //
179            w = ibetaf.incompletebeta(0.5*b, 0.5*a, 0.5);
180           
181            //
182            // If that is greater than y, then the solution w < .5
183            // Otherwise, solve at 1-y to remove cancellation in (b - b*w)
184            //
185            if( (double)(w)>(double)(y) | (double)(y)<(double)(0.001) )
186            {
187                w = ibetaf.invincompletebeta(0.5*b, 0.5*a, y);
188                result = (b-b*w)/(a*w);
189            }
190            else
191            {
192                w = ibetaf.invincompletebeta(0.5*a, 0.5*b, 1.0-y);
193                result = b*w/(a*(1.0-w));
194            }
195            return result;
196        }
197    }
198}
Note: See TracBrowser for help on using the repository browser.